A154408 Primes p such that (p^2 + 1)/10 is also prime.
7, 13, 17, 23, 37, 53, 67, 97, 103, 113, 127, 137, 163, 167, 197, 223, 227, 263, 277, 283, 347, 367, 373, 383, 397, 433, 503, 547, 587, 617, 653, 673, 677, 683, 773, 797, 823, 877, 883, 937, 947, 953, 997, 1063, 1103, 1117, 1163, 1187, 1213, 1367, 1423, 1447
Offset: 1
Examples
37 is in the sequence because both 37 and (37^2 + 1)/10 = 137 are primes. [_Emeric Deutsch_, Jan 21 2009]
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A017305.
Programs
-
Magma
[p: p in PrimesInInterval(7, 2500) | IsPrime((p^2 + 1) div 10)]; // Vincenzo Librandi, Oct 15 2012
-
Maple
a := proc (n) if isprime(n) = true and type((1/10)*n^2+1/10, integer) = true and isprime((1/10)*n^2+1/10) = true then n else end if end proc: seq(a(n), n = 2 .. 1700); # Emeric Deutsch, Jan 21 2009
-
Mathematica
Select[Prime[Range[200]], PrimeQ[(#^2 + 1)/10] &] (* Vincenzo Librandi, Oct 15 2012 *)
Extensions
Corrected and extended by Emeric Deutsch, Jan 21 2009