cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154421 Number of ways to express n as the sum of an odd prime, a positive Fibonacci number and an even Lucas number.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 3, 2, 5, 2, 5, 2, 4, 3, 4, 4, 5, 2, 6, 2, 7, 5, 7, 3, 9, 3, 9, 4, 7, 3, 6, 4, 9, 3, 10, 3, 8, 4, 6, 5, 8, 6, 8, 3, 9, 4, 8, 6, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 09 2009

Keywords

Comments

On Jan 09 2009, Zhi-Wei Sun conjectured that a(n)>0 for all n=6,7,.... ; in other words, any integer n>5 can be written in the form p+F_s+L_{3t} with p an odd prime, s positive and t nonnegative. [Compare this with the conjecture related to the sequence A154290.] Sun verified the above conjecture up to 5*10^6 and Qing-Hu Hou continued the verification up to 2*10^8. If we set v_0=2, v_1=4 and v_{n+1}=4v_n+v_{n-1} for n=1,2,3,..., then L_{3t}=v_t is at least 4^t for every t=0,1,2,.... On Jan 17 2009, D. S. McNeil found that 36930553345551 cannot be written as the sum of a prime, a Fibonacci number and an even Lucas number.

Examples

			For n=8 the a(8)=3 solutions are 3 + F_4 + L_0, 3 + F_2 + L_3, 5 + F_2 + L_0.
		

References

  • R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.

Crossrefs

Programs

  • Mathematica
    PQ[m_]:=m>2&&PrimeQ[m] RN[n_]:=Sum[If[PQ[n-2*Fibonacci[3x+1]+Fibonacci[3x]-Fibonacci[y]],1,0], {x,0,Log[2,n]},{y,2,2*Log[2,Max[2,n-2*Fibonacci[3x+1]+Fibonacci[3x]]]}] Do[Print[n," ",RN[n]];Continue,{n,1,50000}]

Formula

a(n) = |{: p+F_s+L_{3t}=n with p an odd prime, s>1 and t nonnegative}|.

Extensions

McNeil's counterexample added by Zhi-Wei Sun, Jan 20 2009