A154429 a(n) is the least k such that the greedy algorithm (for Egyptian fractions) on 4k/(24n+1) terminates in at most three steps.
2, 2, 2, 5, 3, 4, 13, 2, 2, 7, 5, 51, 4, 4, 5, 2, 3, 5, 5, 7, 5, 6, 2, 5, 11, 4, 3, 5, 5, 2, 2, 7, 4, 5, 29, 2, 2, 2, 5, 8, 4, 11, 2, 2, 6, 4, 11, 5, 3, 11, 2, 5, 5, 5, 7, 4, 37, 2, 3, 3, 4, 7, 5, 5, 2, 2, 17, 5, 5, 54, 2, 2, 2, 5, 7, 4, 11, 2, 2, 6, 5, 3, 4, 5, 10, 2, 7, 5, 5, 7, 5, 12, 2, 3, 10, 4, 7, 5, 5, 2
Offset: 1
Keywords
Examples
For n=3, the Greedy Algorithm gives 8/73=1/10+1/105+1/15330
References
- J. Steuding, Diophantine Analysis, Chapman & Hall/CRC, 2005, pp. 39-40, 50.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- D. Eppstein, Egyptian fractions
Programs
-
Mathematica
GreedyPart[q_Integer] := 0; GreedyPart[Rational[1, y_]] := 0; GreedyPart[q_Rational] := q - If[q < 0 || q > 1, Floor[q], Rational[1, 1 + Quotient[1, q]]]; SubtractShifted[l_] := Drop[l, -2] - Take[l, {2, -2}]; EgyptGreedy[q_] := SubtractShifted[FixedPointList[GreedyPart, q]]; terms := 200; For[i = 25, i <= 24*terms + 1, i = i + 24,k = 2;While[Length[EgyptGreedy[4k/i]]> 3, k++ ];Print[k]]
Extensions
More terms from Seiichi Manyama, Sep 21 2022