cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154672 Numbers n = 5*k^2 such that n - 1 and n + 1 are (twin) primes (thus k=6*m).

Original entry on oeis.org

180, 1620, 8820, 35280, 87120, 151380, 302580, 380880, 691920, 737280, 808020, 1393920, 5020020, 5767380, 7712820, 9604980, 10281780, 11160180, 12450420, 12736080, 14723280, 15138000, 17186580, 17860500, 18663120, 18779220, 19129680, 21300480
Offset: 1

Views

Author

Keywords

Comments

Original definition: Averages of twin prime pairs n such that n*5 and n/5 are squares.
Obviously, n*5 is a square iff n/5 is a square, say k^2. But n=5k^2 can't be the average of a twin prime pair unless it's a multiple of 6, thus k=6m and n=5*36*m^2. - M. F. Hasler, Apr 11 2009

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n*5)^(1/2);If[Floor[s]==s,AppendTo[lst,n]]],{n,6,10!,6}];lst (*...and/or...*) lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n/5)^(1/2);If[Floor[s]==s,AppendTo[lst,n]]],{n,6,10!,6}];lst
  • PARI
    forstep(k=0,1e4,6, isprime(k^2*5+1) & isprime(k^2*5-1) & print1(k^2*5,",")) \\ M. F. Hasler, Apr 11 2009

Formula

A154672 = 5*A000290 intersect A014574 = 180*A000290 intersect A014574. - M. F. Hasler, Apr 11 2009

Extensions

Edited and extended by M. F. Hasler, Apr 11 2009