cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154677 G.f. satisfies: A(x/A(x)) = G(x) where G(x) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan numbers).

Original entry on oeis.org

1, 1, 3, 13, 70, 440, 3116, 24274, 204407, 1836339, 17425275, 173329307, 1796783304, 19323703019, 214843877103, 2462522274426, 29032815570544, 351447240945518, 4361579736404011, 55424256247911490, 720399315622779670, 9569215299494074698, 129799982362958621827
Offset: 0

Views

Author

Paul D. Hanna, Jan 14 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 70*x^4 + 440*x^5 + ... where
A(x/A(x)) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + ...
x/A(x) = x - x^2 - 2*x^3 - 8*x^4 - 43*x^5 - 277*x^6 - 2026*x^7 - ...
		

Crossrefs

Cf. A000108.
Cf. variants: A168448, A168478. - Paul D. Hanna, Dec 06 2009

Programs

  • PARI
    {a(n)=local(A=1+x,F=sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*x^k)+x*O(x^n)); for(i=0,n,A=subst(F,x,serreverse(x/(A+x*O(x^n)))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+A^2*serreverse(x/(A+x*O(x^n))));polcoeff(A,n)} \\ Paul D. Hanna, Dec 06 2009

Formula

G.f. satisfies: A( (x-x^2)/A(x-x^2) ) = 1/(1-x).
G.f. satisfies: A( (x/(1+x)^2)/A(x/(1+x)^2) ) = 1 + x.
G.f. satisfies: A(x) = 1 + A(x)^2*Series_Reversion(x/A(x)). - Paul D. Hanna, Dec 06 2009