A154715 Triangle interpolating between the subsets of an n-set (A000079) and the trees on n labeled nodes (A000272) (read by rows).
1, 2, 3, 4, 18, 16, 8, 81, 192, 125, 16, 324, 1536, 2500, 1296, 32, 1215, 10240, 31250, 38880, 16807, 64, 4374, 61440, 312500, 699840, 705894, 262144, 128, 15309, 344064, 2734375, 9797760, 17294403, 14680064, 4782969
Offset: 0
Examples
Triangle begins as: 1; 2, 3; 4, 18, 16; 8, 81, 192, 125; 16, 324, 1536, 2500, 1296; 32, 1215, 10240, 31250, 38880, 16807; 64, 4374, 61440, 312500, 699840, 705894, 262144;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Harlan J. Brothers, Pascal's triangle, Sidi polynomials, and powers of e, Missouri J. Math. Sci. (2025) Vol. 37, No. 1, 67-78.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Avram Sidi, Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularities, Math. Comp., 35 (1980), 851-874. Eq. (4.10), p. 862.
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*(k+2)^n ))); # G. C. Greubel, May 09 2019
-
Magma
[[Binomial(n,k)*(k+2)^n: k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 09 2019
-
Maple
T := proc(n,k) binomial(n,k)*(k+2)^n end;
-
Mathematica
Table[Binomial[n, k]*(k+2)^n, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 09 2019 *)
-
PARI
{T(n, k) = binomial(n,k)*(k+2)^n}; \\ G. C. Greubel, May 09 2019
-
Sage
[[binomial(n,k)*(k+2)^n for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 09 2019
Formula
T(n,k) = binomial(n,k)*(k+2)^n, where n >= 0, and k >= 0.
From Wolfdieter Lang, Oct 20 2022: (Start)
O.g.f. of column k: (-x)^k*(k + 2)^k/(1 - (k + 2)*x)^(k+1), for k >= 0. See |A075513| with offset 0.
E.g.f. of column k: exp((k+2)*x)*((k+2)*x)^k/k!, for k >= 0. (End)
E.g.f. of triangle (of row polynomials in y): exp(2*x)*substitute(z = x*y*exp(x), LambertW(-z)^2/(-z)*2*(1 + LambertW(-z)))). - Wolfdieter Lang, Oct 24 2022
Comments