cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154715 Triangle interpolating between the subsets of an n-set (A000079) and the trees on n labeled nodes (A000272) (read by rows).

Original entry on oeis.org

1, 2, 3, 4, 18, 16, 8, 81, 192, 125, 16, 324, 1536, 2500, 1296, 32, 1215, 10240, 31250, 38880, 16807, 64, 4374, 61440, 312500, 699840, 705894, 262144, 128, 15309, 344064, 2734375, 9797760, 17294403, 14680064, 4782969
Offset: 0

Views

Author

Peter Luschny, Jan 14 2009

Keywords

Comments

Formatted as a square array:
1st row is A000079(n). Subsets of an n-set.
2nd row is A036290(n+1). Special (n+1)-subsets of a 3n-set partitioned into 3-blocks.
2nd column is A066274(n+1). Endofunctions of [n] such that 1 is not a fixed point.
1st column is A000272(n+2). Trees on n labeled nodes (Cayley's formula).
Alternating sum of rows in the triangle, Sum_{k=0..n} (-1)^(n-k) * T(n,k) = n! = A000142(n).
This triangle gives the coefficient of Sidi's polynomials D_{n,2,n}(-z)/(-z), for n >= 0. See [Sidi 1980]. - Wolfdieter Lang, Oct 27 2022

Examples

			Triangle begins as:
   1;
   2,    3;
   4,   18,    16;
   8,   81,   192,    125;
  16,  324,  1536,   2500,   1296;
  32, 1215, 10240,  31250,  38880,  16807;
  64, 4374, 61440, 312500, 699840, 705894, 262144;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*(k+2)^n ))); # G. C. Greubel, May 09 2019
  • Magma
    [[Binomial(n,k)*(k+2)^n: k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 09 2019
    
  • Maple
    T := proc(n,k) binomial(n,k)*(k+2)^n end;
  • Mathematica
    Table[Binomial[n, k]*(k+2)^n, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 09 2019 *)
  • PARI
    {T(n, k) = binomial(n,k)*(k+2)^n}; \\ G. C. Greubel, May 09 2019
    
  • Sage
    [[binomial(n,k)*(k+2)^n for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 09 2019
    

Formula

T(n,k) = binomial(n,k)*(k+2)^n, where n >= 0, and k >= 0.
From Wolfdieter Lang, Oct 20 2022: (Start)
O.g.f. of column k: (-x)^k*(k + 2)^k/(1 - (k + 2)*x)^(k+1), for k >= 0. See |A075513| with offset 0.
E.g.f. of column k: exp((k+2)*x)*((k+2)*x)^k/k!, for k >= 0. (End)
E.g.f. of triangle (of row polynomials in y): exp(2*x)*substitute(z = x*y*exp(x), LambertW(-z)^2/(-z)*2*(1 + LambertW(-z)))). - Wolfdieter Lang, Oct 24 2022