cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361822 Primes without {2, 5} as digits.

Original entry on oeis.org

3, 7, 11, 13, 17, 19, 31, 37, 41, 43, 47, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 163, 167, 173, 179, 181, 191, 193, 197, 199, 307, 311, 313, 317, 331, 337, 347, 349, 367, 373, 379, 383, 389, 397, 401, 409, 419, 431, 433, 439, 443, 449, 461, 463
Offset: 1

Views

Author

Bernard Schott, Mar 26 2023

Keywords

Comments

Subsequence of primes that are in A361780.

Crossrefs

Intersection of A000040 and A361780.
Cf. A079651 (primes with {1, 4, 7}), A079652 (primes with {0, 3, 6, 8, 9}).
Cf. A247052 (primes with {1, 2, 4, 5, 7}), A034470 (primes with {0, 2, 3, 5, 6, 8, 9}).
Cf. A106116, A154761, A386320 - A386358 (primes without two decimal digits).
Cf. A385776.

Programs

  • Maple
    filter:= proc(n) convert(convert(n,base,10),set) intersect {2,5} = {} end proc:
    select(filter, [seq(ithprime(i),i=1..1000)]); # Robert Israel, Mar 26 2023
  • Mathematica
    Select[Prime[Range[100]], AllTrue[IntegerDigits[#], ! MemberQ[{2, 5}, #1] &] &] (* Amiram Eldar, Mar 26 2023 *)
  • Python
    print(list(islice(primes_with("01346789"), 41))) # uses function/imports in A385776. Jason Bard, Jul 20 2025

A386334 Primes without {1, 8} as digits.

Original entry on oeis.org

2, 3, 5, 7, 23, 29, 37, 43, 47, 53, 59, 67, 73, 79, 97, 223, 227, 229, 233, 239, 257, 263, 269, 277, 293, 307, 337, 347, 349, 353, 359, 367, 373, 379, 397, 409, 433, 439, 443, 449, 457, 463, 467, 479, 499, 503, 509, 523, 547, 557, 563, 569, 577, 593, 599, 607
Offset: 1

Views

Author

Jason Bard, Jul 19 2025

Keywords

Crossrefs

Intersection of A038603 and A038616.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 2, 3, 4, 5, 6, 7, 9]];
    
  • Mathematica
    Select[Prime[Range[120]], DigitCount[#, 10, 1] == 0 && DigitCount[#, 10, 8] == 0 &]
  • PARI
    primes_with(, 1, [0, 2, 3, 4, 5, 6, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("02345679"), 41))) # uses function/imports in A385776
    
Showing 1-2 of 2 results.