cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A155561 Intersection of A000404 and A154777: N = a^2 + b^2 = c^2 + 2d^2 with a,b,c,d>0.

Original entry on oeis.org

17, 18, 34, 41, 68, 72, 73, 82, 89, 97, 113, 136, 137, 146, 153, 162, 164, 178, 193, 194, 225, 226, 233, 241, 242, 257, 272, 274, 281, 288, 289, 292, 306, 313, 328, 337, 353, 356, 369, 386, 388, 401, 409, 425, 433, 449, 450, 452, 457, 466, 482, 514, 521, 544
Offset: 1

Views

Author

M. F. Hasler, Jan 24 2009

Keywords

Examples

			a(1)=17 is the least number that can be written as A+B and C+2D where A,B,C,D are positive squares (namely 17 = 1^2 + 4^2 = 3^2 + 2*2^2).
a(2)=18 is the second smallest number which figures in A000404 and in A154777 as well.
		

Programs

  • PARI
    isA155561(n,/* use optional 2nd arg to get other analogous sequences */c=[2,1]) = { for( i=1,#c, for( b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,10^3, isA155561(n) & print1(n","))

A339047 a(n) gives the multiplicity for A154777(n) representable as x^2 + 2*y^2 with positive integers x and y, for n >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3
Offset: 1

Views

Author

Wolfdieter Lang, Dec 09 2020

Keywords

Examples

			See A338432 for examples.
The pairs [A154777(n), a(n)] begin:
[3, 1], [6, 1], [9, 1], [11, 1], [12, 1], [17, 1], [18, 1], [19, 1], [22, 1], [24, 1], [27, 2], [33, 2], [34, 1], [36, 1], [38, 1], [41, 1], [43, 1], [44, 1], [48, 1], [51, 2], [54, 2], [57, 2], [59, 1], [66, 2], [67, 1], [68, 1], [72, 1], [73, 1], [75, 1], [76, 1], [81, 2], [82, 1], [83, 1], [86, 1], [88, 1], [89, 1], [96, 1], [97, 1], [99, 3], ...
		

Crossrefs

Formula

a(n) gives the number of occurrences of A154777(n) = x^2 + 2*y^2 with positive integers x and y. This is obtained from triangle A338432.

A155574 Intersection of A154777 and A092572: N = a^2 + 2b^2 = c^2 + 3d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

12, 19, 36, 43, 48, 57, 67, 73, 76, 97, 108, 129, 139, 144, 147, 163, 171, 172, 192, 193, 201, 211, 219, 228, 241, 268, 283, 291, 292, 300, 304, 307, 313, 324, 331, 337, 361, 379, 387, 388, 409, 417, 432, 433, 441, 457, 475, 484, 489, 499, 507, 513, 516, 523
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155564 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155574(n,/* optional 2nd arg allows us to get other sequences */c=[3,2]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155574(n) & print1(n","))

A155577 Intersection of A154777 and A154778: N = a^2 + 2b^2 = c^2 + 5d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

6, 9, 24, 36, 41, 54, 81, 86, 89, 96, 129, 134, 144, 150, 164, 166, 201, 214, 216, 225, 241, 246, 249, 281, 294, 321, 324, 326, 344, 356, 369, 384, 401, 409, 441, 449, 454, 486, 489, 516, 521, 534, 536, 566, 569, 576, 600, 601, 614, 641, 656, 664, 681, 694
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155567 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155577(n,/* optional 2nd arg allows us to get other sequences */c=[5,2]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155577(n) & print1(n","))

A155709 Intersection of A154777 and A155716: N = a^2 + 2b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

22, 33, 73, 88, 97, 118, 121, 132, 150, 166, 177, 193, 198, 214, 225, 241, 249, 262, 292, 294, 297, 313, 321, 337, 352, 358, 388, 393, 409, 433, 438, 441, 454, 457, 472, 484, 502, 528, 537, 550, 577, 582, 600, 601, 649, 657, 664, 673, 681, 694, 708, 726, 753
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155569 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155709(n,/* optional 2nd arg allows us to get other sequences */c=[6,2]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155709(n) & print1(n","))

A201592 Least value of x arising in A154777(n).

Original entry on oeis.org

1, 2, 1, 3, 2, 3, 4, 1, 2, 4, 3, 1, 4, 2, 6, 3, 5, 6, 4, 1, 2, 5, 3, 4, 7, 6, 8, 1, 5, 2, 3, 8, 9, 6, 4, 9, 8, 5, 1, 2, 3, 6, 9, 4, 10, 7, 5, 1, 9, 2, 6, 8, 3, 11, 4, 12, 7, 10, 12, 5, 8, 1, 6, 2, 3, 10, 12, 7, 4, 9, 5, 8, 11, 12, 6, 1, 2, 3, 7, 14, 4, 11
Offset: 1

Views

Author

Zak Seidov, Dec 02 2011

Keywords

Comments

In case of multiple representation of terms in A154777, as, e.g., for A154777(11)=27, 3^2+2*3^2 (x=3, y=3) and 5^2+2*1^2 (x=5, y=1) a pair (x,y) with smallest x is chosen, hence 11th term of the sequence is 3. The corresponding y values are in A201593.

Crossrefs

A201593 Largest value of y arising in A154777(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 3, 3, 2, 3, 4, 3, 4, 1, 4, 3, 2, 4, 5, 5, 4, 5, 5, 3, 4, 2, 6, 5, 6, 6, 3, 1, 5, 6, 2, 4, 6, 7, 7, 7, 6, 4, 7, 3, 6, 7, 8, 5, 8, 7, 6, 8, 3, 8, 1, 7, 5, 2, 8, 7, 9, 8, 9, 9, 6, 4, 8, 9, 7, 9, 8, 6, 5, 9, 10, 10, 10, 9, 3, 10, 7
Offset: 1

Views

Author

Zak Seidov, Dec 02 2011

Keywords

Comments

In case of multiple representation of terms in A154777, as for A154777(11)=27, 3^2+2*3^2 (x=3, y=3) and 5^2+2*1^2 (x=5, y=1) a pair (x,y) with smallest x (and largest y) is chosen, hence 11th term of the sequence is 3. Corresponding x values are in A201592.

Crossrefs

A155572 Intersection of A000404, A154777 and A154778: N = a^2 + b^2 = c^2 + 2d^2 = e^2 + 5f^2 for some positive integers a,b,c,d,e,f.

Original entry on oeis.org

41, 89, 164, 225, 241, 281, 356, 369, 401, 409, 449, 521, 569, 601, 641, 656, 761, 769, 801, 809, 881, 900, 929, 964, 1009, 1025, 1049, 1124, 1129, 1201, 1249, 1289, 1321, 1361, 1409, 1424, 1476, 1481, 1489, 1521, 1601, 1604, 1609, 1636, 1681, 1721, 1796
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Crossrefs

Programs

  • PARI
    isA155572(n,/* optional 2nd arg allows us to get other sequences */c=[5,2,1]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,1999, isA155572(n) & print1(n","))

A155573 Intersection of A000404, A154777 and A092572: N = a^2 + b^2 = c^2 + 2d^2 = e^2 + 3f^2 for some positive integers a,b,c,d,e,f.

Original entry on oeis.org

73, 97, 193, 241, 292, 313, 337, 388, 409, 433, 457, 577, 601, 657, 673, 769, 772, 873, 900, 937, 964, 1009, 1033, 1129, 1153, 1156, 1168, 1201, 1249, 1252, 1297, 1321, 1348, 1489, 1521, 1552, 1609, 1636, 1657, 1732, 1737, 1753, 1777, 1801, 1825, 1828
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Crossrefs

Programs

  • PARI
    isA155573(n,/* optional 2nd arg allows us to get other sequences */c=[3,2,1]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,1999, isA155573(n) & print1(n","))

A155711 Intersection of A154777 and A155717: N = a^2 + 2b^2 = c^2 + 7d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

11, 43, 44, 67, 72, 88, 99, 107, 113, 121, 137, 144, 163, 172, 176, 179, 193, 211, 233, 268, 275, 281, 288, 331, 337, 344, 347, 352, 379, 387, 396, 401, 428, 443, 449, 452, 457, 473, 484, 491, 499, 536, 539, 547, 548, 569, 571, 576, 603, 617, 641, 648, 652
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Crossrefs

Programs

  • PARI
    isA155711(n,/* optional 2nd arg allows us to get other sequences */c=[7,2]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155711(n) & print1(n","))
Showing 1-10 of 36 results. Next