A154778 Numbers of the form a^2 + 5b^2 with positive integers a,b.
6, 9, 14, 21, 24, 29, 30, 36, 41, 45, 46, 49, 54, 56, 61, 69, 70, 81, 84, 86, 89, 94, 96, 101, 105, 109, 116, 120, 126, 129, 134, 141, 144, 145, 149, 150, 161, 164, 166, 174, 180, 181, 184, 189, 196, 201, 205, 206, 214, 216, 224, 225, 229, 230, 241, 244, 245, 246
Offset: 1
Examples
a(1) = 6 = 1^2 + 5*1^2 is the least number that can be written as A+5B where A,B are positive squares. a(2) = 9 = 2^2 + 5*1^2 is the second smallest number that can be written in this way.
Crossrefs
Cf. A033205 (subsequence of primes). [From R. J. Mathar, Jan 26 2009]
Programs
-
Mathematica
formQ[n_] := Reduce[a > 0 && b > 0 && n == a^2 + 5 b^2, {a, b}, Integers] =!= False; Select[ Range[300], formQ] (* Jean-François Alcover, Sep 20 2011 *) Timing[mx = 300; limx = Sqrt[mx]; limy = Sqrt[mx/5]; Select[Union[Flatten[Table[x^2 + 5 y^2, {x, limx}, {y, limy}]]], # <= mx &]] (* T. D. Noe, Sep 20 2011 *)
-
PARI
isA154778(n,/* use optional 2nd arg to get other analogous sequences */c=5) = { for( b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & return(1))} for( n=1,300, isA154778(n) & print1(n","))
Comments