cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A154780 Numbers k with d digits such that all digits of k and the last d+1 digits of k^2 are prime.

Original entry on oeis.org

5, 35, 235, 335, 2335, 3335, 23335, 32335, 33335, 72335, 233335, 323335, 333335, 372335, 572335, 723335, 2333335, 2372335, 2723335, 3233335, 3323335, 3333335, 3572335, 3723335, 7233335, 7323335, 7372335, 7572335, 22372335, 23333335
Offset: 1

Views

Author

M. F. Hasler, Jan 23 2009

Keywords

Comments

Any term with d digits is the concatenation of a prime digit and an earlier term (with d-1 digits).
The sequence is infinite since it contains subsequences b(n) = (10^n-1)/3+2 = (5,35,335,3335,...), c(n) = 23*10^n+b(n) = (235,2335,23335,...), d(n) = 3233*10^n+b(n), e(n) = 7233*10^n+b(n) etc.

Crossrefs

Subsequence of A046034; contains A153025 as a subsequence.

Programs

  • Mathematica
    Select[Range[5,24000000,5],And@@PrimeQ[IntegerDigits[#]]&& And@@ PrimeQ[ Take[ IntegerDigits[#^2],-(IntegerLength[#]+1)]]&] (* Harvey P. Dale, Dec 31 2012 *)
  • PARI
    last=[0]; {for( d=1,8, new=[]; forprime( p=0,9, for( k=1,#last, is_A046034((p*10^(d-1)+last[k])^2%10^(d+1)+20*10^d) & new=concat( new, p*10^(d-1)+last[k]))); print1(last=new,","))} /* for slightly more efficient code see A154779 */

Formula

For all n, a(n) == (5 mod 10).
For a(n) > 5, a(n) == 35 (mod 100).
For a(n) > 35, a(n) == 235 or 335 (mod 1000).
For a(n) > 335, a(n) == 2335 or 3335 (mod 10^4).
Showing 1-1 of 1 results.