A154780 Numbers k with d digits such that all digits of k and the last d+1 digits of k^2 are prime.
5, 35, 235, 335, 2335, 3335, 23335, 32335, 33335, 72335, 233335, 323335, 333335, 372335, 572335, 723335, 2333335, 2372335, 2723335, 3233335, 3323335, 3333335, 3572335, 3723335, 7233335, 7323335, 7372335, 7572335, 22372335, 23333335
Offset: 1
Programs
-
Mathematica
Select[Range[5,24000000,5],And@@PrimeQ[IntegerDigits[#]]&& And@@ PrimeQ[ Take[ IntegerDigits[#^2],-(IntegerLength[#]+1)]]&] (* Harvey P. Dale, Dec 31 2012 *)
-
PARI
last=[0]; {for( d=1,8, new=[]; forprime( p=0,9, for( k=1,#last, is_A046034((p*10^(d-1)+last[k])^2%10^(d+1)+20*10^d) & new=concat( new, p*10^(d-1)+last[k]))); print1(last=new,","))} /* for slightly more efficient code see A154779 */
Formula
For all n, a(n) == (5 mod 10).
For a(n) > 5, a(n) == 35 (mod 100).
For a(n) > 35, a(n) == 235 or 335 (mod 1000).
For a(n) > 335, a(n) == 2335 or 3335 (mod 10^4).
Comments