A154817 Triangle T(n,k) = A060187(n+2,k+2), 1<=k<=n.
6, 23, 23, 76, 230, 76, 237, 1682, 1682, 237, 722, 10543, 23548, 10543, 722, 2179, 60657, 259723, 259723, 60657, 2179, 6552, 331612, 2485288, 4675014, 2485288, 331612, 6552, 19673, 1756340, 21707972, 69413294, 69413294, 21707972, 1756340
Offset: 1
Examples
6; 23, 23; 76, 230, 76; 237, 1682, 1682, 237; 722, 10543, 23548, 10543, 722; 2179, 60657, 259723, 259723, 60657, 2179; 6552, 331612, 2485288, 4675014, 2485288, 331612, 6552; 19673, 1756340, 21707972, 69413294, 69413294, 21707972, 1756340, 19673; 59038, 9116141, 178300904, 906923282, 1527092468, 906923282, 178300904, 9116141, 59038;
Crossrefs
Cf. A060187
Programs
-
Mathematica
p[x_, n_] = 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2]; t[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m]]; Table[ Select[ Table[ t[ n, i ], {i, 1, n}], # > 1 & ], {n, 0, 14} ]; Select[ Flatten[ Table[ t[ n, i ], {n, 0, 13}, {i, 1, n} ] ], # > 1 & ]
Comments