A154820 Numbers whose trajectory under iteration of sum of cubes of digits eventually turns out to follow the cyclic iteration of 133, 55, 250.
4, 13, 25, 28, 31, 40, 46, 52, 55, 64, 82, 103, 130, 133, 205, 208, 250, 256, 265, 280, 289, 298, 301, 310, 313, 331, 349, 394, 400, 406, 439, 448, 460, 484, 493, 502, 505, 520, 526, 550, 562, 589, 598, 604, 625, 640, 652, 679, 697, 769, 796, 802, 820, 829
Offset: 1
Examples
Taking 40 for example, 4^3 + 0^3 = 64; 6^3 + 4^3 = 280; 2^3 + 8^3 + 0^3 = 520; 5^3 + 2^3 + 0^3 = 133; 1^3 + 3^3 + 3^3 = 55; 5^3 + 5^3 = 250.
Programs
-
Maple
A055012 := proc(n) local a,d ; a := 0 ; for d in convert(n,base,10) do a := a+d^3; od; a ; end: isA154820 := proc(n) local traj,t ; t := n ; traj := {} ; while true do if t in traj then if t in {133,55,250} then RETURN(true) ; else RETURN(false) ; fi; else traj := traj union {t} ; t := A055012(t) ; fi; od: end: for n from 1 to 1000 do if isA154820(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Jan 18 2009
Extensions
Extended by R. J. Mathar, Jan 18 2009
Edited by Charles R Greathouse IV, Aug 02 2010
Comments