cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154940 Number of ways to express n as the sum of an odd prime, a Lucas number and a Catalan number.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 6, 5, 5, 5, 7, 7, 6, 5, 9, 8, 8, 9, 10, 7, 9, 10, 7, 9, 7, 6, 7, 9, 7, 9, 11, 9, 9, 8, 8, 7, 7, 7, 8, 8, 9, 11, 10, 10, 13, 12, 10, 10, 10, 10, 10, 14, 9, 7, 11, 11, 9, 14, 12, 10, 12, 13, 9, 11, 8, 7, 10, 12, 10, 12, 12, 12, 12, 11, 11, 12, 8, 11, 11, 14, 10, 13, 10
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 17 2009

Keywords

Comments

On Jan 16 2009, Zhi-Wei Sun conjectured that a(n)>0 for n=5,6,... and verified this up to 5*10^6. (Sun also thought that lim inf_n a(n)/log(n) is a positive constant.) D. S. McNeil continued the verification up to 10^13 and found no counterexamples. The conjecture is similar to a conjecture of Qing-Hu Hou and Jiang Zeng related to the sequence A154404; both conjectures were motivated by Sun's recent conjecture on sums of primes and Fibonacci numbers (cf. A154257).

Examples

			For n=10 the a(10)=5 solutions are 3 + L_0 + C_3, 5 + L_2 + C_2, 5 + L_3 + C_1, 7 + L_0 + C_1, 7 + L_1 + C_2.
		

References

  • R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
  • R. P. Stanley, Enumerative Combinatorics, Vol. II, Cambridge Univ. Press, 1999, Chapter 6.

Crossrefs

Programs

  • Mathematica
    PQ[m_]:=m>2&&PrimeQ[m] L[x_]:=2*Fibonacci[x+1]-Fibonacci[x] RN[n_]:=Sum[If[PQ[n-L[x]-CatalanNumber[y]], 1, 0], {x,0,2*Log[2,n]},{y,1,2*Log[2,Max[2,n-L[x]+1]]}] Do[Print[n, " ",RN[n]]; Continue, {n, 1, 100000}]

Formula

a(n) = |{: p+L_s+C_t=n with p an odd prime, s>=0 and t>0}|.

Extensions

More terms (from b-file) added by N. J. A. Sloane, Aug 31 2009