A154945 Decimal expansion of Sum_{p} 1/(p^2-1), summed over the primes p = A000040.
5, 5, 1, 6, 9, 3, 2, 9, 7, 6, 5, 6, 9, 9, 9, 1, 8, 4, 4, 3, 9, 7, 3, 1, 0, 2, 3, 9, 7, 1, 3, 4, 3, 5, 7, 8, 1, 3, 1, 5, 0, 0, 3, 7, 7, 7, 7, 8, 6, 2, 8, 2, 5, 2, 2, 3, 0, 6, 1, 7, 3, 3, 4, 0, 5, 9, 5, 6, 5, 5, 9, 7, 6, 4, 1, 0, 7, 0, 6, 7, 1, 0, 7, 7, 7, 5, 0, 9, 8, 3, 1, 6, 8, 2, 7, 7, 9, 6, 0, 7, 2, 5, 0, 5, 8
Offset: 0
Examples
0.551693297656999184439731023971343578131500377778628252230...
Links
- Jacques Grah, Comportement moyen du cardinal de certains ensembles de facteurs premiers, Monatsh. Math., Vol. 118 (1994), pp. 91-109, Corollary 6.1.
- Carl Pomerance and Andrzej Schinzel, Multiplicative Properties of Sets of Residues, Moscow Journal of Combinatorics and Number Theory, Vol. 1, Iss. 1 (2011), pp. 52-66. See p. 61.
- Index to constants which are prime zeta sums {0,1,1}
Crossrefs
Programs
-
Mathematica
digits = 105; m0 = 2 digits; Clear[rd]; rd[m_] := rd[m] = RealDigits[delta1 = Sum[PrimeZetaP[2n], {n, 1, m}] , 10, digits][[1]]; rd[m0]; rd[m = 2m0]; While[rd[m] != rd[m-m0], Print[m]; m = m+m0]; Print[N[delta1, digits]]; rd[m] (* Jean-François Alcover, Sep 11 2015, updated Mar 16 2019 *)
-
PARI
eps()=2.>>bitprecision(1.) primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s)))) sumpos(n=1,primezeta(2*n)) \\ Charles R Greathouse IV, Aug 02 2016
-
PARI
sumeulerrat(1/(p^2-1)) \\ Amiram Eldar, Mar 18 2021
Formula
Extensions
More digits from Jean-François Alcover, Sep 11 2015
Comments