cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154957 A symmetric (0,1)-triangle.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 18 2009

Keywords

Comments

Parity of A003983. - Jeremy Gardiner, Mar 09 2014

Examples

			Triangle begins
  1;
  1, 1;
  1, 0, 1;
  1, 0, 0, 1;
  1, 0, 1, 0, 1;
  1, 0, 1, 1, 0, 1;
  1, 0, 1, 0, 1, 0, 1;
  1, 0, 1, 0, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 1, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1;
		

Crossrefs

Cf. A003983, A004524 (row sums), A154958 (diagonal sums), A158856.

Programs

  • Mathematica
    T[n_, k_]:= Sum[(Mod[j+1,2] - Mod[j,2]), {j,0,Min[k,n-k]}];
    Table[T[n, k], {n,0,20}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 07 2022 *)
  • Sage
    def A154957(n,k): return sum( (j+1)%2 - j%2 for j in (0..min(k,n-k)) )
    flatten([[A154957(n,k) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Mar 07 2022

Formula

T(n,k) = Sum_{j=0..n} [j<=k]*[j<=n-k]*(mod(j+1,2) - mod(j,2)).
T(2*n, n) - T(2*n, n+1) = (-1)^n.
T(2*n, n) = (n+1) mod 2.
Sum_{k=0..n} T(n, k) = A004524(n+3).
Sum_{k=0..floor(n/2)} T(n-k, k) = A154958(n) (diagonal sums).
From G. C. Greubel, Mar 07 2022: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..floor(n/2)} T(n, k) = floor((n+4)/4).
T(2*n+1, n) = (1+(-1)^n)/2. (End)