A154957 A symmetric (0,1)-triangle.
1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 0, 1; 1, 0, 0, 1; 1, 0, 1, 0, 1; 1, 0, 1, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= Sum[(Mod[j+1,2] - Mod[j,2]), {j,0,Min[k,n-k]}]; Table[T[n, k], {n,0,20}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 07 2022 *)
-
Sage
def A154957(n,k): return sum( (j+1)%2 - j%2 for j in (0..min(k,n-k)) ) flatten([[A154957(n,k) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Mar 07 2022
Formula
T(n,k) = Sum_{j=0..n} [j<=k]*[j<=n-k]*(mod(j+1,2) - mod(j,2)).
T(2*n, n) - T(2*n, n+1) = (-1)^n.
T(2*n, n) = (n+1) mod 2.
Sum_{k=0..n} T(n, k) = A004524(n+3).
Sum_{k=0..floor(n/2)} T(n-k, k) = A154958(n) (diagonal sums).
From G. C. Greubel, Mar 07 2022: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..floor(n/2)} T(n, k) = floor((n+4)/4).
T(2*n+1, n) = (1+(-1)^n)/2. (End)
Comments