A155033 Matrix inverse of A155031.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 3, 2, 1, 1, 0, 4, 3, 2, 1, 1, 0, 10, 7, 4, 2, 1, 1, 0, 18, 13, 7, 4, 2, 1, 1, 0, 37, 26, 15, 8, 4, 2, 1, 1, 0, 71, 51, 29, 15, 8, 4, 2, 1, 1, 0, 146, 104, 59, 31, 16, 8, 4, 2, 1, 1, 0, 285, 203, 115, 61, 31, 16, 8, 4, 2, 1, 1, 0, 577, 411, 233, 123, 63, 32, 16, 8, 4, 2, 1, 1
Offset: 1
Examples
Table begins and row sums are: 1 = 1; 0, 1 = 1; 0, 1, 1 = 2; 0, 1, 1, 1 = 3; 0, 3, 2, 1, 1 = 7; 0, 4, 3, 2, 1, 1 = 11; 0, 10, 7, 4, 2, 1, 1 = 25; 0, 18, 13, 7, 4, 2, 1, 1 = 46; 0, 37, 26, 15, 8, 4, 2, 1, 1 = 94;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Cf. A101173.
Programs
-
Mathematica
A155031[n_, k_]:= If[k>n, 0, If[k==n, 1, If[k==1 || Mod[n, k]==0, 0, -1]]]; A155033:= Inverse[Table[A155031[n, k], {n,30}, {k,30}]]; Table[A155033[[n, k]], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 15 2021 *)
Formula
Sum_{k=1..n} T(n,k) = A101173(n). - G. C. Greubel, Mar 15 2021