cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155086 Numbers k such that k^2 == -1 (mod 13).

Original entry on oeis.org

5, 8, 18, 21, 31, 34, 44, 47, 57, 60, 70, 73, 83, 86, 96, 99, 109, 112, 122, 125, 135, 138, 148, 151, 161, 164, 174, 177, 187, 190, 200, 203, 213, 216, 226, 229, 239, 242, 252, 255, 265, 268, 278, 281, 291, 294, 304, 307, 317, 320, 330, 333, 343, 346, 356, 359
Offset: 1

Views

Author

Vincenzo Librandi, Jan 20 2009

Keywords

Comments

Numbers k such that k == 5 or 8 mod 13. - Charles R Greathouse IV, Dec 28 2011

Crossrefs

Cf. A002144, A047221 (m=5), A155095 (m=17), A156619 (m=25), A155096 (m=29), A155097 (m=37), A155098 (m=41), A154609 (bisection).

Programs

  • Magma
    I:=[5, 8, 18]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 26 2012
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {5, 8, 18}, 50] (* Vincenzo Librandi, Feb 26 2012 *)
    Select[Range[1000], PowerMod[#, 2, 13] == 12 &] (* Vincenzo Librandi, Apr 24 2014 *)

Formula

a(n) = a(n-1)+a(n-2)-a(n-3).
G.f.: x*(5+3*x+5*x^2)/((1+x)*(x-1)^2) .
a(n) = 13*(n-1/2)/2 -7*(-1)^n/4.
a(n) = a(n-2)+13. - M. F. Hasler, Jun 16 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(3*Pi/26)*Pi/13. - Amiram Eldar, Feb 27 2023
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cos(Pi/26)*sec(3*Pi/26) = 1/(2*cos(Pi/13)-1).
Product_{n>=1} (1 + (-1)^n/a(n)) = cosec(5*Pi/26)/2. (End)

Extensions

Algebra simplified by R. J. Mathar, Aug 18 2009
Edited by N. J. A. Sloane, Jun 23 2010