cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155096 Numbers k such that k^2 == -1 (mod 29).

Original entry on oeis.org

12, 17, 41, 46, 70, 75, 99, 104, 128, 133, 157, 162, 186, 191, 215, 220, 244, 249, 273, 278, 302, 307, 331, 336, 360, 365, 389, 394, 418, 423, 447, 452, 476, 481, 505, 510, 534, 539, 563, 568, 592, 597, 621, 626, 650, 655, 679, 684, 708, 713, 737, 742, 766
Offset: 1

Views

Author

Vincenzo Librandi, Jan 20 2009

Keywords

Comments

Numbers k such that k == 12 or 17 (mod 29). - Charles R Greathouse IV, Dec 27 2011
The first pair (a,b) is such that a+b=p, a*b=p*h+1, with h<=(p-1)/4; subsequent pairs are given as (a+kp, b+kp), k=1,2,3,...

Examples

			Let p = 29, a+b=29, a*b=29h+1, h<=7; for h=7, a+b=29, a*b=204, a=12, b=17; other pairs (12+29, 17+29) and so on.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1,-1},{12,17,41},100] (* Vincenzo Librandi, Feb 29 2012 *)
    Select[Range[800], PowerMod[#, 2, 29] == 28 &] (* Vincenzo Librandi, Apr 24 2014 *)
    CoefficientList[Series[(12 + 5 x + 12 x^2)/((1 + x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, May 03 2014 *)
  • PARI
    A155096(n)=n\2*29-12*(-1)^n /* M. F. Hasler, Jun 16 2010 */

Formula

From M. F. Hasler, Jun 16 2010: (Start)
a(n) = 12*(-1)^(n+1) + 29 [n/2].
a(2k+1) = 29 k + a(1), a(2k) = 29 k - a(1), with a(1) = A002314(4) since 29 = A002144(4).
a(n) = a(n-2) + 29 for all n > 2. (End)
G.f.: x*(12 + 5*x + 12*x^2)/((1 + x)*(1 - x)^2). - Vincenzo Librandi, May 03 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(5*Pi/58)*Pi/29. - Amiram Eldar, Feb 27 2023

Extensions

Terms checked & minor edits by M. F. Hasler, Jun 16 2010