A155096 Numbers k such that k^2 == -1 (mod 29).
12, 17, 41, 46, 70, 75, 99, 104, 128, 133, 157, 162, 186, 191, 215, 220, 244, 249, 273, 278, 302, 307, 331, 336, 360, 365, 389, 394, 418, 423, 447, 452, 476, 481, 505, 510, 534, 539, 563, 568, 592, 597, 621, 626, 650, 655, 679, 684, 708, 713, 737, 742, 766
Offset: 1
Examples
Let p = 29, a+b=29, a*b=29h+1, h<=7; for h=7, a+b=29, a*b=204, a=12, b=17; other pairs (12+29, 17+29) and so on.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,1,-1},{12,17,41},100] (* Vincenzo Librandi, Feb 29 2012 *) Select[Range[800], PowerMod[#, 2, 29] == 28 &] (* Vincenzo Librandi, Apr 24 2014 *) CoefficientList[Series[(12 + 5 x + 12 x^2)/((1 + x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, May 03 2014 *)
-
PARI
A155096(n)=n\2*29-12*(-1)^n /* M. F. Hasler, Jun 16 2010 */
Formula
From M. F. Hasler, Jun 16 2010: (Start)
a(n) = 12*(-1)^(n+1) + 29 [n/2].
a(n) = a(n-2) + 29 for all n > 2. (End)
G.f.: x*(12 + 5*x + 12*x^2)/((1 + x)*(1 - x)^2). - Vincenzo Librandi, May 03 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(5*Pi/58)*Pi/29. - Amiram Eldar, Feb 27 2023
Extensions
Terms checked & minor edits by M. F. Hasler, Jun 16 2010
Comments