A155098 Numbers k such that k^2 == -1 (mod 41).
9, 32, 50, 73, 91, 114, 132, 155, 173, 196, 214, 237, 255, 278, 296, 319, 337, 360, 378, 401, 419, 442, 460, 483, 501, 524, 542, 565, 583, 606, 624, 647, 665, 688, 706, 729, 747, 770, 788, 811, 829, 852, 870, 893, 911, 934, 952, 975, 993, 1016, 1034, 1057
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,1,-1},{9,32,50},100] (* Vincenzo Librandi, Feb 29 2012 *) Select[Range[1100], PowerMod[#, 2, 41] == 40 &] (* Vincenzo Librandi, Apr 24 2014 *) -
PARI
A155098(n)=n\2*41-9*(-1)^n /* M. F. Hasler, Jun 16 2010 */
Formula
From M. F. Hasler, Jun 16 2010: (Start)
a(n) = 9*(-1)^(n+1) + 41*floor(n/2).
a(n) = a(n-2) + 41 for all n > 2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(9*Pi/41)*Pi/41. - Amiram Eldar, Feb 26 2023
Extensions
Terms checked & minor edits by M. F. Hasler, Jun 16 2010
Comments