cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A155103 Triangle read by rows: Matrix inverse of A155102.

Original entry on oeis.org

1, 2, 1, 0, 0, 1, 6, 3, 0, 1, 0, 0, 0, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 30, 15, 0, 5, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 28, 0, 0, 7, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Mats Granvik, Jan 20 2009

Keywords

Comments

A028361 appears in the first column at A036987 positions. A028362 appears in the second column, A155105 in the third and A155104 in the fourth. A000384 appears as the third ray from zero and A100147 as the fourth.

Examples

			Table begins:
1,
2,1,
0,0,1,
6,3,0,1,
0,0,0,0,1,
0,0,4,0,0,1,
0,0,0,0,0,0,1,
30,15,0,5,0,0,0,1,
		

Crossrefs

Programs

  • Mathematica
    m = 14; t = Inverse[ Table[ Which[n == k, 1, n == 2*k, -k - 1, True, 0], {n, 1, m}, {k, 1, m}]]; Flatten[ Table[t[[n, k]], {n, 1, m}, {k, 1, n}]] (* Jean-François Alcover, Jul 19 2012 *)

A155105 Positive numbers appearing in the third column of A155103.

Original entry on oeis.org

1, 4, 28, 364, 9100, 445900, 43252300, 8347693900, 3213862151500, 2471459994503500, 3798634011551879500, 11673202317498925703500
Offset: 1

Views

Author

Mats Granvik, Jan 20 2009

Keywords

Crossrefs

Cf. A155103.

Programs

  • Maple
    A155102 := proc(n,k) if n = k then 1 ; elif n =2*k then -k-1 ; else 0; end if; end proc:
    A155103 := proc(amx) a := array(1..amx,1..amx) ; a[1,1] := 1/A155102(1,1) ;
            for r from 1 to amx do
                    for c from 1 to r-1 do a[c,r] := 0 ; end do:
                    a[r,r] := 1/A155102(r,r) ;
                    for c from r-1 to 1 by -1 do a[r,c] := -add(a[cp,c]*A155102(r,cp),cp=c..r-1)/A155102(r,r) ;
                            if c = 3 and a[r,c] <> 0 then print( a[r,c]) ; end if;
                    end do:
            end do:
            return ;
    end proc:
    A155103(290) ; # R. J. Mathar, Dec 07 2010
  • PARI
    \\ after R. J. Mathar
    T(n,k)=if(n==k,1,if(n==2*k,-(k+1))); \\ from A155102
    \\ First term = 1 omitted
    a155103(upto) = my(m=3*2^upto, a=matid(m)); for(r=1, m, forstep(c=r-1, 1, -1, a[r,c]=-sum(cp=c, r-1, a[cp,c]*T(r,cp)); if(c==3 && a[r,c]!=0, print1(a[r,c],", "))));
    a155103(8) \\ Hugo Pfoertner, Oct 03 2024

Formula

From Tristan Cam, Oct 02 2024: (Start)
a(1) = 1, a(n) = a(n-1)*(1+3*2^(n-2)) (conjectured).
a(n) = Product_{k=1..n-1} 1+3*2^(k-1) = QPochhammer[-3, 2, n-1]. (conjectured). (End)

Extensions

Two more terms from R. J. Mathar, Dec 07 2010
a(8)-a(12) from Hugo Pfoertner, Oct 02 2024
Showing 1-2 of 2 results.