A155105 Positive numbers appearing in the third column of A155103.
1, 4, 28, 364, 9100, 445900, 43252300, 8347693900, 3213862151500, 2471459994503500, 3798634011551879500, 11673202317498925703500
Offset: 1
Crossrefs
Cf. A155103.
Programs
-
Maple
A155102 := proc(n,k) if n = k then 1 ; elif n =2*k then -k-1 ; else 0; end if; end proc: A155103 := proc(amx) a := array(1..amx,1..amx) ; a[1,1] := 1/A155102(1,1) ; for r from 1 to amx do for c from 1 to r-1 do a[c,r] := 0 ; end do: a[r,r] := 1/A155102(r,r) ; for c from r-1 to 1 by -1 do a[r,c] := -add(a[cp,c]*A155102(r,cp),cp=c..r-1)/A155102(r,r) ; if c = 3 and a[r,c] <> 0 then print( a[r,c]) ; end if; end do: end do: return ; end proc: A155103(290) ; # R. J. Mathar, Dec 07 2010
-
PARI
\\ after R. J. Mathar T(n,k)=if(n==k,1,if(n==2*k,-(k+1))); \\ from A155102 \\ First term = 1 omitted a155103(upto) = my(m=3*2^upto, a=matid(m)); for(r=1, m, forstep(c=r-1, 1, -1, a[r,c]=-sum(cp=c, r-1, a[cp,c]*T(r,cp)); if(c==3 && a[r,c]!=0, print1(a[r,c],", ")))); a155103(8) \\ Hugo Pfoertner, Oct 03 2024
Formula
From Tristan Cam, Oct 02 2024: (Start)
a(1) = 1, a(n) = a(n-1)*(1+3*2^(n-2)) (conjectured).
a(n) = Product_{k=1..n-1} 1+3*2^(k-1) = QPochhammer[-3, 2, n-1]. (conjectured). (End)
Extensions
Two more terms from R. J. Mathar, Dec 07 2010
a(8)-a(12) from Hugo Pfoertner, Oct 02 2024