A155106 Numbers k such that both k and k+1 can be expressed as the sum of three distinct nonzero squares in 2 or more ways.
89, 125, 149, 154, 165, 173, 181, 185, 194, 209, 217, 221, 229, 233, 237, 241, 245, 248, 249, 250, 269, 273, 274, 275, 281, 285, 293, 296, 301, 305, 308, 309, 314, 317, 321, 325, 329, 333, 338, 341, 344, 345, 346, 349, 353, 354, 355, 356, 360, 361, 365, 369, 370, 373, 376, 377, 381, 385, 389, 392
Offset: 1
Examples
Considering the term 149, 149 = 1^2+2^2+12^2 = 2^2+8^2+9^2 = 6^2+7^2+8^2 and 150 = 1^2+7^2+10^2 = 2^2+5^2+11^2.
Crossrefs
Extensions
Description clarified by Harvey P. Dale, Dec 13 2010