A155171 Numbers p such that if q = p+1 then (a = q^2-p^2, b = 2*p*q, c = q^2 + p^2) is a primitive Pythagorean triple with s-1 and s+1 primes, where s = a+b+c.
1, 2, 7, 10, 20, 29, 44, 50, 65, 70, 76, 77, 101, 104, 107, 115, 154, 175, 197, 202, 226, 227, 247, 275, 371, 380, 412, 457, 490, 500, 574, 596, 647, 671, 682, 710, 764, 829, 926, 1052, 1085, 1102, 1127, 1186, 1204, 1205, 1225, 1256, 1280, 1324, 1325, 1331
Offset: 1
Keywords
Examples
p=1,q=2,a=3,b=4,c=5,s=12-+1 primes.
Programs
-
Mathematica
lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,n]],{n,8!}];lst
Extensions
Definition edited by N. J. A. Sloane, Jul 19 2022