A155178 Numbers p of primitive Pythagorean triangles such that perimeters and products of 3 sides are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes, pr=a*b*c, pr-+1 are primes.
1, 7916, 35882, 37816, 47491, 128429, 131830, 146471, 154799, 157579, 170219, 174964, 187544, 207829, 208039, 222887, 223142, 262502, 291544, 319825, 327602, 331627, 353857, 476681, 477659, 494207, 522025, 537454, 540682, 558161, 571670
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;pr=a*b*c;If[PrimeQ[s-1]&&PrimeQ[s+1]&&PrimeQ[pr-1]&&PrimeQ[pr+1],AppendTo[lst,n]],{n,3*9!}];lst
Comments