cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155449 Numbers k == 6 or 11 (mod 17).

Original entry on oeis.org

6, 11, 23, 28, 40, 45, 57, 62, 74, 79, 91, 96, 108, 113, 125, 130, 142, 147, 159, 164, 176, 181, 193, 198, 210, 215, 227, 232, 244, 249, 261, 266, 278, 283, 295, 300, 312, 317, 329, 334, 346, 351, 363, 368, 380, 385, 397, 402, 414, 419, 431, 436, 448, 453
Offset: 1

Views

Author

Vincenzo Librandi, Jan 22 2009

Keywords

Comments

Or, numbers k such that k^2 == 2 (mod 17).

Programs

  • Mathematica
    LinearRecurrence[{1,1,-1},{6,11,23},100] (* Vincenzo Librandi, Feb 29 2012 *)
    CoefficientList[Series[(6 + 5 x + 6 x^2)/((1 + x) (1 - x)^2), {x, 0, 60}], x] (* Vincenzo Librandi, May 03 2014 *)

Formula

a(n) = a(n-1) + a(n-2) - a(n-3); a(1)=6, a(2)=11, a(3)=23.
G.f.: x*(6 + 5*x + 6*x^2)/((1 + x)*(1 - x)^2). - Vincenzo Librandi, May 03 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(5*Pi/34)*Pi/17. - Amiram Eldar, Feb 27 2023

Extensions

Simpler definition from Franklin T. Adams-Watters, Jun 16 2010