A155449 Numbers k == 6 or 11 (mod 17).
6, 11, 23, 28, 40, 45, 57, 62, 74, 79, 91, 96, 108, 113, 125, 130, 142, 147, 159, 164, 176, 181, 193, 198, 210, 215, 227, 232, 244, 249, 261, 266, 278, 283, 295, 300, 312, 317, 329, 334, 346, 351, 363, 368, 380, 385, 397, 402, 414, 419, 431, 436, 448, 453
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,1,-1},{6,11,23},100] (* Vincenzo Librandi, Feb 29 2012 *) CoefficientList[Series[(6 + 5 x + 6 x^2)/((1 + x) (1 - x)^2), {x, 0, 60}], x] (* Vincenzo Librandi, May 03 2014 *)
Formula
a(n) = a(n-1) + a(n-2) - a(n-3); a(1)=6, a(2)=11, a(3)=23.
G.f.: x*(6 + 5*x + 6*x^2)/((1 + x)*(1 - x)^2). - Vincenzo Librandi, May 03 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(5*Pi/34)*Pi/17. - Amiram Eldar, Feb 27 2023
Extensions
Simpler definition from Franklin T. Adams-Watters, Jun 16 2010
Comments