A155450 Numbers congruent to 5 or 18 mod 23.
5, 18, 28, 41, 51, 64, 74, 87, 97, 110, 120, 133, 143, 156, 166, 179, 189, 202, 212, 225, 235, 248, 258, 271, 281, 294, 304, 317, 327, 340, 350, 363, 373, 386, 396, 409, 419, 432, 442, 455, 465, 478, 488, 501, 511, 524, 534, 547, 557, 570, 580, 593, 603, 616
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,1,-1},{5,18,28},80] (* Vincenzo Librandi, Feb 29 2012 *) CoefficientList[Series[(5 + 13 x + 5 x^2)/((1 + x) (1 - x)^2), {x, 0, 60}], x] (* Vincenzo Librandi, May 03 2014 *)
Formula
a(n) = a(n-1)+a(n-2)-a(n-3), with a(1)=5, a(2)=18, a(3)=28.
G.f.: x*(5 + 13*x + 5*x^2)/((1 + x)*(1 - x)^2). - Vincenzo Librandi, May 03 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(5*Pi/23)*Pi/23. - Amiram Eldar, Feb 26 2023
Extensions
New name from Charles R Greathouse IV, Jan 11 2012
Comments