cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A155470 Numbers that are the sum of 2 numbers; nonzero square and cube, including repetitions, squareNumber <> cubeNumber.

Original entry on oeis.org

5, 9, 10, 17, 17, 24, 26, 28, 31, 33, 37, 43, 44, 50, 52, 57, 63, 65, 65, 68, 72, 73, 76, 82, 89, 89, 91, 100, 101, 108, 108, 113, 122, 126, 127, 128, 129, 129, 134, 141, 145, 145, 148, 152, 161, 164, 170, 171, 174, 177, 185, 189, 196, 197, 204, 206, 208, 217, 220
Offset: 1

Views

Author

Keywords

Comments

17=3^2+2^3, 17=4^2+1^3, 31=2^2+3^3, 43=4^2+3^3, 65=1^2+4^3, 65=8^2+1^3, 100=6^2+4^3, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[If[x!=y,a=x^2+y^3;If[a>n,Break[]];If[a==n,AppendTo[lst,n]]],{y,5!}],{x,5!}],{n,4*5!}];lst

A155472 Numbers that are the sum of 2 (not-distinct) numbers; nonzero power3 and power5, including repetitions.

Original entry on oeis.org

2, 9, 28, 33, 40, 59, 65, 96, 126, 157, 217, 244, 248, 251, 270, 307, 344, 368, 375, 459, 513, 544, 586, 730, 755, 761, 972, 1001, 1025, 1032, 1032, 1051, 1088, 1149, 1240, 1243, 1332, 1363, 1367, 1536, 1574, 1729, 1753, 1760, 1971, 2024, 2198, 2229, 2355
Offset: 1

Views

Author

Keywords

Comments

40=2^3+2^5, 1032=2^3+4^5 = 1032=10^3+2^5, 1971=12^3+3^5, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[a=x^3+y^5;If[a>n,Break[]];If[a==n,AppendTo[lst,n]],{y,5!}],{x,5!}],{n,7!}];lst

A155473 Numbers of the form x^3+y^5, with x,y>0 and x<>y.

Original entry on oeis.org

9, 28, 33, 59, 65, 96, 126, 157, 217, 244, 248, 251, 307, 344, 368, 375, 459, 513, 544, 586, 730, 755, 761, 972, 1001, 1025, 1032, 1032, 1051, 1149, 1240, 1243, 1332, 1363, 1367, 1536, 1574, 1729, 1753, 1760, 1971, 2024, 2198, 2229, 2355, 2440, 2745, 2752
Offset: 1

Views

Author

Keywords

Comments

Numbers with more than one of these representations are repeated for each of them.
This concerns 1032 = 2^3+4^5 = 10^3+2^5 or 9504 = 12^3+6^5 = 21^3+3^5, for example (see A035046).

Examples

			59=3^3+2^5, 157=5^3+2^5, 513=8^3+1^5, 586=7^3+3^5, ...
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[If[x!=y,a=x^3+y^5;If[a>n,Break[]];If[a==n,AppendTo[lst,n]]],{y,5!}],{x,5!}],{n,7!}];lst

Extensions

Edited by R. J. Mathar, Mar 02 2009
Showing 1-3 of 3 results.