A155715 Least number expressible as a^2 + k b^2 with positive integers a,b, for each k=1,...,n.
2, 17, 73, 73, 241, 241, 1009, 1009, 1009, 1009, 7561, 7561, 21961, 32356, 32356, 32356, 44641, 44641, 349924, 349924, 349924, 349924, 1399696, 1399696, 1399696, 3027249, 3027249, 3027249, 4349601, 4349601, 18567396, 18567396, 18567396
Offset: 1
Keywords
Examples
a(1) = 2 = 1^2 + 1^2 is the least number of the sequence A000404 (sum of positive squares). a(2) = 17 = 1^2 + 4^2 = 3^2 + 2*2^2 is the least number in sequence A000404 to be in sequence A154777 (a^2+2b^2)as well. a(3) = 73 = 3^2 + 8^2 = 1^2 + 2*6^2 = 5^2 + 3*4^2 is the least number in the intersection of sequences A000404, A154777 and A092572 (a^2+3b^2).
Links
- Donovan Johnson, Table of n, a(n) for n=1..46
Crossrefs
Programs
-
PARI
k=1; for( n=1,10^9, forstep( c=k,1,-1, for( b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & next(2));next(2)); print1(n",");k++;n--)
Extensions
a(23)-a(46) and b-file from Donovan Johnson, Sep 29 2009
Comments