cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A028372 Smallest prime that is simultaneously of forms x^2 + m*y^2 for m = 1, ..., n.

Original entry on oeis.org

2, 2, 73, 73, 241, 241, 1009, 1009, 1009, 1009, 7561, 7561, 21961, 35281, 35281, 35281, 44641, 44641, 374089, 622561, 622561, 622561, 4379281, 4379281, 4379281, 17690689, 17690689, 17690689, 17690689, 17690689, 316234801, 1996405009, 1996405009, 1996405009
Offset: 1

Views

Author

Keywords

Comments

Sequence A155715 lists the smallest numbers of this kind with x,y > 0, but not necessarily prime. - M. F. Hasler, Jan 27 2009
a(n) > 4*10^9 for n >= 35. - Donovan Johnson, May 29 2012

Programs

  • PARI
    p=2; for(k=1,999, forstep( c=k,1,-1, for( b=1,sqrtint(p\c), issquare(p-c*b^2) & next(2)); p=nextprime(p+1); c=k+1); print1(p",")) \\ M. F. Hasler, Jan 27 2009

Extensions

a(17)-a(18) corrected and a(26)-a(31) from Donovan Johnson, Sep 29 2009
a(32)-a(34) from Donovan Johnson, May 29 2012

A155708 Numbers expressible as a^2 + k*b^2 with nonzero integers a,b, for k=2, k=3 and k=5.

Original entry on oeis.org

36, 129, 144, 201, 241, 324, 409, 441, 489, 516, 576, 601, 769, 804, 849, 900, 921, 964, 1009, 1129, 1161, 1201, 1249, 1296, 1321, 1489, 1521, 1569, 1609, 1636, 1641, 1764, 1801, 1809, 1849, 1929, 1956, 2064, 2089, 2161, 2169, 2281, 2304, 2361, 2404, 2521
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    S[2]:= {}: S[3]:= {}: S[5]:= {}:
    for a from 1 to floor(sqrt(N)) do
      for k in [2,3,5] do
        S[k]:= S[k] union {seq(a^2 + k*b^2, b = 1 .. floor(sqrt((N-a^2)/k)))}
      od
    od:
    R:= S[2] intersect S[3] intersect S[5]:
    sort(convert(R,list)); # Robert Israel, Jul 11 2018
  • PARI
    isA155708(n, /* optional 2nd arg allows us to get other sequences */c=[5, 3, 2]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
    for(n=1,9999, isA155708(n) & print1(n","))

A155714 Least number expressible as a^2 + p b^2 with positive integers a,b, for each prime p <= prime(n) = A000040(n).

Original entry on oeis.org

3, 12, 36, 144, 144, 4356, 4356, 4356, 7056, 17424, 176400, 2547216, 2547216, 6290064, 6780816, 6780816, 6780816, 6780816, 93315600, 93315600, 271986064, 271986064, 271986064, 271986064, 271986064, 308213136, 308213136, 308213136
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

a(n) > 10^9 for n >= 33. [From Donovan Johnson, Sep 29 2009]

Crossrefs

Programs

  • PARI
    A155714(k,n=1) = { local(p); until( !n++, p=prime(k); until( !p=precprime(p-1), for( b=1, sqrtint((n-1)\p), issquare(n-p*b^2) & next(2)); next(2)); break);n}
    t=1; for(k=1,30, print1(t=A155714(k,t),","))

Extensions

a(12)-a(32) and b-file from Donovan Johnson, Sep 29 2009
Showing 1-3 of 3 results.