cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: John L. Drost

John L. Drost's wiki page.

John L. Drost has authored 40 sequences. Here are the ten most recent ones:

A329963 Numbers k such that sigma(k) is not divisible by 3.

Original entry on oeis.org

1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43, 48, 52, 57, 61, 63, 64, 67, 73, 75, 76, 79, 81, 84, 91, 93, 97, 100, 103, 108, 109, 111, 112, 117, 121, 124, 127, 129, 133, 139, 144, 148, 151, 156, 157, 163, 171, 172, 175, 181, 183, 189, 192, 193, 199, 201, 208, 211, 217, 219, 223, 225, 228, 229
Offset: 1

Author

John L. Drost, Nov 25 2019

Keywords

Comments

A number k is in the sequence iff in its prime factorization, all primes p == 1 (mod 3) occur to such a power p^e that e != 2 (mod 3), and all primes == 2 (mod 3) occur to even powers. (3 can occur to any power.) This sequence is similar but not identical to many others; in particular, 343 is in this sequence, but not in A034022. (And here we don't have 196, although it is in A034022). - First sentence corrected and additional notes added by Antti Karttunen, Jul 03 2024, see also Robert Israel's Nov 09 2016 comment in A087943.
The asymptotic density of this sequence is 0 (Dressler, 1975). - Amiram Eldar, Jul 23 2020

Crossrefs

Complement of A087943. Positions of zeros in A354100, nonzeros in A074941.
Cf. A000203, A353815 (characteristic function).
Setwise difference A003136 \ A088535.
Subsequences: A002476, A068228, A351537, A374135.
Cf. also A088232.
Not the same as A034022.

Programs

Extensions

More terms from Joshua Oliver, Nov 26 2019
Data section further extended up to a(71), to better differentiate from nearby sequences - Antti Karttunen, Jul 04 2024

A287298 a(n) is the largest square with distinct digits in base n.

Original entry on oeis.org

1, 1, 225, 576, 38025, 751689, 10323369, 355624164, 9814072356, 279740499025, 8706730814089, 23132511879129, 11027486960232964, 435408094460869201, 18362780530794065025, 48470866291337805316, 39207739576969100808801, 1972312183619434816475625, 104566626183621314286288961
Offset: 2

Author

John L. Drost, May 22 2017

Keywords

Comments

a(n) does not always have n digits in base n. If n is 5 mod 8 then a number which contains all the digits in base n is congruent to (n-1)n/2 mod (n-1). It will be then divisible by a single power of 2 and not a square.
a(22) = 340653564758245010607213613056. - Chai Wah Wu, May 24 2017

Examples

			a(4)=225 which is 3201 in base 4. Higher squares have at least 5 digits in base 4.
		

Programs

  • Python
    from gmpy2 import isqrt, mpz, digits
    def A287298(n): # assumes n <= 62
        m = isqrt(mpz(''.join(digits(i,n) for i in range(n-1,-1,-1)),n))
        m2 = m**2
        d = digits(m2,n)
        while len(set(d)) < len(d):
            m -= 1
            m2 -= 2*m+1
            d = digits(m2,n)
        return int(m2) # Chai Wah Wu, May 24 2017

Extensions

Added a(16)-a(20) and corrected a(12) by Chai Wah Wu, May 24 2017

A225888 Primes p such that neither 2 nor 3 are primitive roots, but together 2 and 3 generate the nonzero residues mod p.

Original entry on oeis.org

41, 103, 109, 151, 157, 229, 251, 271, 277, 367, 397, 683, 733, 761, 967, 971, 991, 1051, 1069, 1163, 1181, 1289, 1303, 1429, 1471, 1543, 1759, 1783, 1789, 1811, 1879, 2003, 2297, 2411, 2441, 2551, 2749, 2791, 2887, 2917, 3061, 3079, 3109, 3229, 3251, 3301, 3319
Offset: 1

Author

John L. Drost, May 19 2013

Keywords

Examples

			2 has multiplicative order 20 mod 41, 3 has order 8 mod 41 so neither is a primitive root. The subgroup 2 and 3 generate together will have order lcm(20,8) = 40 so 2 and 3 generate all nonzero residues.
		

Crossrefs

Programs

  • PARI
    is(n)=if(n>40 && isprime(n), my(a=znorder(Mod(2,n)),b); if(a==n-1,return(0)); b=znorder(Mod(3,n)); bCharles R Greathouse IV, May 19 2013

A212605 a(n) is the smallest prime such that it and the previous four primes are all of the form x^2 + n * y^2.

Original entry on oeis.org

2633, 587, 1777, 2633, 239521, 862471, 2017, 208457, 586273, 147451, 4951, 586273, 207073, 612553, 102871, 208457, 301681, 351439, 242447, 2076901, 55948657, 27487, 119503, 9425257, 239521, 5188507, 128467, 75853, 74049413
Offset: 1

Author

John L. Drost, May 22 2012

Keywords

Examples

			a(7)=2017 since 2017 = 225 + 7*256, 2011 = 1444 + 7*81, 2003 = 1156 + 7*121, 1999 = 1936 + 7*9, and 1997 = 625 + 7*196 are all consecutive primes.
		

Programs

  • Mathematica
    Table[again = True; lim = 10; While[again, lim2 = lim/Sqrt[n]; t = PrimePi[Select[Union[Flatten[Table[x^2 + n y^2, {x, 0, lim}, {y, 0, lim2}]]], # < lim^2 && PrimeQ[#] &]];  pos = Position[Partition[Differences[t], 4, 1], {1, 1, 1, 1}, 1, 1]; If[pos != {}, again = False; ans = Prime[t[[pos[[1, 1]] + 4]]], lim = 10*lim]]; ans, {n, 20}] (* T. D. Noe, May 23 2012 *)

A212604 a(n) is the smallest prime such that it and the previous three primes are all of the form x^2 + n * y^2.

Original entry on oeis.org

409, 577, 1759, 409, 55049, 1783, 127, 20873, 12889, 6529, 4943, 12889, 3461, 138041, 46411, 20873, 115013, 7417, 4919, 158209, 8490721, 7177, 15787, 4967401, 55049, 383393, 76597, 5273, 252541, 10448401, 2543, 577193
Offset: 1

Author

John L. Drost, May 22 2012

Keywords

Examples

			a(3)=1759 since 1759 = 676 + 3*361, 1753 = 25 + 3*576, 1747 = 1600 + 3*49, 1741 = 289 + 3*484 are all prime.
		

Programs

  • Mathematica
    Table[again = True; lim = 10; While[again, lim2 = lim/Sqrt[n];  t = PrimePi[Select[Union[Flatten[Table[x^2 + n y^2, {x, 0, lim}, {y, 0, lim2}]]], # < lim^2 && PrimeQ[#] &]]; pos = Position[Partition[Differences[t], 3, 1], {1, 1, 1}, 1, 1] ; If[pos != {}, again = False; ans = Prime[t[[pos[[1,1]] + 3]]], lim = 10*lim]]; ans, {n, 20}] (* T. D. Noe, May 23 2012 *)

A212603 a(n) is the smallest prime such that it and the previous two primes are all of the form x^2 + n * y^2.

Original entry on oeis.org

101, 97, 163, 101, 3061, 1777, 113, 2617, 8353, 419, 4937, 8353, 3457, 34729, 8209, 2617, 53201, 2203, 4253, 12301, 54049, 991, 6803, 232801, 3061, 11491, 739, 2237, 32297, 68329, 857, 19801, 12853, 7411, 53299, 28081, 941, 14503, 20107, 88729, 23993, 23251
Offset: 1

Author

John L. Drost, May 22 2012

Keywords

Examples

			a(2)=97 since 97 = 25 + 2*36, 89 = 81 + 2*4, 83 = 81 + 2*1.
		

Programs

  • Mathematica
    Table[again = True; lim = 10; While[again, lim2 = lim/Sqrt[n];  t = PrimePi[Select[Union[Flatten[Table[x^2 + n y^2, {x, 0, lim}, {y, 0, lim2}]]], # < lim^2 && PrimeQ[#] &]]; i = 1; While[i < Length[t] - 1 && (t[[i]] + 1 < t[[i + 1]] ||  t[[i+1]] + 1 < t[[i+2]]), i++]; If[i < Length[t] - 1, again = False; ans = Prime[t[[i+2]]], lim = 10*lim]]; ans, {n, 42}] (* T. D. Noe, May 23 2012 *)

A212602 a(n) is the smallest prime such that it and the previous prime are both of the form x^2 + n * y^2.

Original entry on oeis.org

17, 3, 37, 17, 409, 79, 11, 97, 673, 251, 53, 673, 17, 239, 211, 97, 353, 337, 23, 521, 1213, 97, 173, 4201, 409, 859, 439, 113, 937, 7369, 293, 2129, 7573, 569, 571, 673, 41, 1567, 997, 409, 1601, 337, 47, 401, 1801, 1783, 1867, 4201, 197, 499, 733, 1301
Offset: 1

Author

John L. Drost, May 22 2012

Keywords

Examples

			a(1)=17 since 17 = 4^2 + 1^2. 13 = 3^2 + 2^2 and these are the smallest consecutive primes that are the sum of two squares.
		

Programs

  • Mathematica
    Table[again = True; lim = 10; While[again,lim2 = lim/Sqrt[n];  t = PrimePi[Select[Union[Flatten[Table[x^2 + n y^2, {x, 0, lim}, {y, 0, lim2}]]], # < lim^2 && PrimeQ[#] &]]; i = 1; While[i < Length[t] && t[[i]] + 1 < t[[i+1]], i++]; If[i < Length[t], again = False; ans = Prime[t[[i+1]]], lim = 10*lim]]; ans, {n, 60}] (* T. D. Noe, May 23 2012 *)

A178458 Abundant numbers of the form k^2 + 1.

Original entry on oeis.org

2210, 3250, 24650, 94250, 117650, 199810, 214370, 310250, 351650, 485810, 499850, 700570, 727610, 744770, 915850, 986050, 1306450, 1545050, 1814410, 1841450, 1885130, 2582450, 2699450, 3052010, 3583450, 4028050, 4678570, 5094050, 5257850, 6466850, 7059650, 7144930
Offset: 1

Author

John L. Drost, Dec 22 2010

Keywords

Examples

			2210 = 2*5*13*17, sigma(2210) = 4536 > 2*2210 and 47^2 + 1 = 2210.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000]^2 + 1, DivisorSigma[1, #] > 2# &]

A178050 n=x^2+17, n and n+2 are prime.

Original entry on oeis.org

17, 26261, 90017, 138401, 176417, 562517, 788561, 2022101, 2683061, 4743701, 5336117, 9622421, 11614481, 13927841, 21344417, 21734261, 22184117, 38192417, 59629301, 64448801, 68558417, 79923617, 82301201, 89302517, 90098081, 91814741, 95648417
Offset: 1

Author

John L. Drost, Dec 16 2010

Keywords

Examples

			17=0^2+17, and 19 are prime.
26261=162^2+17 and 26263 are prime.
		

Crossrefs

Subsequence of A228244.

Programs

  • PARI
    isok(n) = isprime(n) && isprime(n+2) && issquare(n-17); \\ Michel Marcus, Aug 18 2013

Extensions

a(26)-a(27) from Michel Marcus, Aug 18 2013

A178066 Primes p of the form x^2+59, such that p+2 is also prime.

Original entry on oeis.org

59, 108959, 176459, 4040159, 5904959, 10497659, 25401659, 26625659, 38192459, 89302559, 105884159, 117288959, 155750459, 156500159, 228614459, 251856959, 306950459, 432224159, 491508959, 508953659, 624500159, 682776959, 934524959, 1092963659, 1106892959
Offset: 1

Author

John L. Drost, Dec 16 2010

Keywords

Comments

All sequence members end in '59' since x must be divisible by 10 (30 actually).

Examples

			59 = 0^2+59, 59 and 61 are prime.
108959 = 330^2+59, 108959 and 108961 are prime.
		

Programs

  • Mathematica
    Select[(30*Range[0,2000])^2+59,PrimeQ[#]&&PrimeQ[#+2]&] (* Harvey P. Dale, Apr 14 2012 *)

Extensions

More terms from Harvey P. Dale, Apr 14 2012
New name from Jason Yuen, Sep 01 2025