A155712 Intersection of A092572 and A155716: N = a^2 + 3b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.
7, 28, 31, 49, 63, 73, 79, 97, 100, 103, 112, 124, 127, 151, 175, 193, 196, 199, 217, 223, 241, 252, 271, 279, 292, 313, 316, 337, 343, 367, 388, 400, 409, 412, 433, 439, 441, 448, 457, 463, 484, 487, 496, 508, 511, 553, 567, 577, 601, 604, 607, 631, 657, 673
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 1000: # for terms <= N A:= {seq(seq(a^2 + 3*b^2, b=1 .. floor(sqrt((N-a^2)/3))),a=1..floor(sqrt(N)))} intersect {seq(seq(c^2 + 6*d^2, d = 1 .. floor(sqrt((N-c^2)/6))),c=1..floor(sqrt(N)))}: sort(convert(A,list)); # Robert Israel, Jan 19 2025
-
PARI
isA155712(n,/* optional 2nd arg allows to get other sequences */c=[6,3]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) && next(2)); return);1} for( n=1,999, isA155712(n) && print1(n",")) \\ Update to modern PARI syntax (& -> &&) by M. F. Hasler, Jan 18 2025
Comments