A155739 Decimal expansion of the Euler-Mascheroni constant divided by 2.
2, 8, 8, 6, 0, 7, 8, 3, 2, 4, 5, 0, 7, 6, 6, 4, 3, 0, 3, 0, 3, 2, 5, 6, 0, 4, 5, 0, 4, 1, 2, 0, 1, 2, 1, 5, 5, 2, 1, 0, 7, 9, 6, 6, 7, 9, 6, 9, 9, 6, 1, 7, 9, 9, 4, 0, 2, 8, 8, 3, 6, 1, 7, 4, 4, 2, 4, 3, 3, 8, 6, 3, 3, 8, 8, 8, 3, 2, 3, 3, 5, 4, 6, 8, 4, 7, 3, 5, 3, 1, 6, 4, 5, 8, 7, 3, 3, 7, 4, 7, 5, 7, 3, 1, 5
Offset: 0
Examples
0.288607832450766430303256045041201215521079667969961799402...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Ovidiu Furdui, Problem 1870, Mathematics Magazine, Vol. 84, No. 2 (2011), p. 151; A double zeta sum, Solution to Problem 1870 by Joel Schlosberg, ibid., Vol. 85, No. 2 (2012), p. 156.
Programs
-
Magma
R:= RealField(100); EulerGamma(R)/2; // G. C. Greubel, Aug 31 2018
-
Maple
evalf(gamma/2) ;
-
Mathematica
RealDigits[EulerGamma/2 , 10, 100][[1]] (* G. C. Greubel, Aug 31 2018 *)
-
PARI
default(realprecision, 100); Euler/2 \\ G. C. Greubel, Aug 31 2018
Formula
Equals Sum_{k,m>=1} k*(zeta(k+m)-1)/(k+m)^2 (Furdui, 2011). - Amiram Eldar, Jun 09 2022