cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A240768 Left-truncatable primes p with property that prepending any single decimal digit to p does not produce a prime.

Original entry on oeis.org

2, 5, 773, 3373, 3947, 4643, 5113, 6397, 6967, 7937, 15647, 16823, 24373, 33547, 34337, 37643, 56983, 57853, 59743, 62383, 63347, 63617, 69337, 72467, 72617, 75653, 76367, 87643, 92683, 97883, 98317, 121997, 124337, 163853, 213613, 236653, 242467, 242797
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 12 2014

Keywords

Examples

			3373 belongs to this sequence because 3373, 373, 73 and 3 are all prime; k*10^4 + 3373, for k = 1 to 9, are all composite.
		

Crossrefs

Subsequence of A024785 and of A155762.

Programs

  • PARI
    for(n=2, 242797, v=n; while(isprime(n), c=n; n=lift(Mod(c, 10^(#Str(c)-1))); if(!(#Str(c)-#Str(n)==1), break)); if(n==0, s=#Str(v); t=0; for(k=1, 9, if(isprime(k*10^s+v), break, t++)); if(t==9, print1(v, ", "))); n=v);

Formula

A024785 INTERSECT A155762.

A240843 Primes p with property that appending or prepending any single decimal digit to p does not produce a prime.

Original entry on oeis.org

773, 1103, 1301, 3947, 3989, 4241, 4637, 4931, 5039, 5387, 5417, 6803, 6917, 6971, 7229, 7451, 7703, 7753, 10211, 10303, 10337, 10607, 10657, 10723, 10859, 11117, 11399, 11423, 11489, 11717, 11813, 11971, 11987, 12119, 12329, 12541, 12653, 12659, 12907, 12983
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 13 2014

Keywords

Examples

			1103 belongs to this sequence because 10*1103 + k and k*10^4 + 1103, for k = 1 to 9, are all composite.
		

Crossrefs

Subsequence of A119289 and of A155762.

Programs

  • Mathematica
    fQ[n_] := Block[{e = Floor[ Log10@ n] + 1, r = Range@ 9}, Union@ Flatten[ PrimeQ[{10 n + r, r*10^e + n}]] == {False}]; Select[ Prime@ Range@ 1550, fQ] (* Robert G. Wilson v, Apr 15 2014 *)
  • PARI
    for(n=2, 12983, v=n; if(isprime(n), s=#Str(v); t=0; for(k=1, 9, if(isprime(10*v+k)||isprime(k*10^s+v), break, t++)); if(t==9, print1(v, ", "))); n=v);

Formula

A119289 INTERSECT A155762.
Showing 1-2 of 2 results.