cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A155770 Primes of form: 2*n^2+2*n-41.

Original entry on oeis.org

19, 43, 71, 103, 139, 179, 223, 271, 379, 439, 503, 571, 643, 719, 883, 971, 1063, 1259, 1471, 1583, 1699, 2203, 2339, 3079, 3571, 3919, 4099, 4283, 4663, 5059, 5471, 5683, 6343, 6571, 6803, 7039, 7523, 8539, 8803, 9343, 9619, 11059, 11971, 12919, 13903
Offset: 1

Views

Author

Vincenzo Librandi, Jan 27 2009

Keywords

Examples

			19 is in this sequence because 2*5^2+2*5-41=19.
		

Crossrefs

Programs

A155772 Primes p such that 2*p^2+2*p-41 is a prime.

Original entry on oeis.org

5, 7, 11, 17, 19, 23, 29, 53, 59, 61, 83, 101, 103, 107, 131, 151, 179, 181, 191, 193, 199, 227, 239, 269, 281, 293, 313, 367, 383, 389, 419, 439, 467, 487, 503, 521, 541, 569, 587, 599, 601, 607, 617, 641, 647, 653, 673, 677, 691, 709, 733, 739, 757, 769, 787
Offset: 1

Views

Author

Vincenzo Librandi, Jan 27 2009

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(5, 800) | IsPrime(2*p^2 + 2*p - 41)]; // Vincenzo Librandi, Oct 15 2012
  • Mathematica
    Select[Prime[Range[3, 200]], PrimeQ[2 #^2 + 2 # - 41] &] (* Vincenzo Librandi, Oct 15 2012 *)

A241264 Numbers k such that 2*k^2 + 2*k - 41 is not a prime.

Original entry on oeis.org

4, 13, 20, 24, 26, 30, 31, 32, 35, 36, 37, 38, 40, 41, 43, 47, 49, 51, 54, 55, 60, 62, 63, 64, 67, 70, 71, 72, 73, 75, 76, 78, 79, 81, 82, 84, 85, 88, 89, 92, 94, 97, 98, 100, 102, 105, 108, 109, 111, 112, 113, 114, 115, 117, 118, 119, 120, 122, 123, 124, 125
Offset: 1

Views

Author

Vincenzo Librandi, Apr 20 2014

Keywords

Examples

			13 is in this sequence because 2*13^2 + 2*13 - 41 = 323 = 17*19.
		

Crossrefs

Complement of A155771.

Programs

  • Magma
    [n: n in [1..150] | not IsPrime(2*n^2+2*n-41)];
  • Mathematica
    Select[Range[4, 200], ! PrimeQ[2 #^2 + 2 # - 41] &]
Showing 1-3 of 3 results.