A361540 Expansion of e.g.f. A(x,y) satisfying A(x,y) = Sum_{n>=0} (A(x,y)^n + y)^n * x^n/n!, as a triangle read by rows.
1, 1, 1, 3, 4, 1, 22, 39, 18, 1, 269, 604, 426, 92, 1, 4616, 12625, 12040, 4550, 520, 1, 102847, 332766, 401355, 218300, 50085, 3222, 1, 2824816, 10574725, 15456756, 11017895, 3867080, 577731, 21700, 1, 92355769, 393171416, 676130644, 597596216, 284455150, 69038984, 7022596, 157544, 1
Offset: 0
Examples
E.g.f. A(x,y) = 1 + (y + 1)*x + (y^2 + 4*y + 3)*x^2/2! + (y^3 + 18*y^2 + 39*y + 22)*x^3/3! + (y^4 + 92*y^3 + 426*y^2 + 604*y + 269)*x^4/4! + (y^5 + 520*y^4 + 4550*y^3 + 12040*y^2 + 12625*y + 4616)*x^5/5! + (y^6 + 3222*y^5 + 50085*y^4 + 218300*y^3 + 401355*y^2 + 332766*y + 102847)*x^6/6! + (y^7 + 21700*y^6 + 577731*y^5 + 3867080*y^4 + 11017895*y^3 + 15456756*y^2 + 10574725*y + 2824816)*x^7/7! + (y^8 + 157544*y^7 + 7022596*y^6 + 69038984*y^5 + 284455150*y^4 + 597596216*y^3 + 676130644*y^2 + 393171416*y + 92355769)*x^8/8! + ... This triangle of coefficients T(n,k) of x^n*y^k in e.g.f. A(x,y) begins: [1]; [1, 1]; [3, 4, 1]; [22, 39, 18, 1]; [269, 604, 426, 92, 1]; [4616, 12625, 12040, 4550, 520, 1]; [102847, 332766, 401355, 218300, 50085, 3222, 1]; [2824816, 10574725, 15456756, 11017895, 3867080, 577731, 21700, 1]; [92355769, 393171416, 676130644, 597596216, 284455150, 69038984, 7022596, 157544, 1]; [3506278528, 16744363569, 33151425840, 35028273756, 21134516256, 7193104758, 1262445744, 90148860, 1224576, 1]; ... RELATED TABLE. The elements of this triangle T(n,k) when divided by binomial(n,k) yields the related triangle: [1]; [1, 1]; [3, 2, 1]; [22, 13, 6, 1]; [269, 151, 71, 23, 1]; [4616, 2525, 1204, 455, 104, 1]; [102847, 55461, 26757, 10915, 3339, 537, 1]; [2824816, 1510675, 736036, 314797, 110488, 27511, 3100, 1]; [92355769, 49146427, 24147523, 10671361, 4063645, 1232839, 250807, 19693, 1]; [3506278528, 1860484841, 920872940, 417003259, 167734256, 57088133, 15029116, 2504135, 136064, 1]; ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1080
Crossrefs
Programs
-
PARI
/* E.g.f. A(x,y) = Sum_{n>=0} (A(x,y)^n + y)^n * x^n/n! */ {T(n,k) = my(A = 1); for(i=1,n, A = sum(m=0, n, (A^m + y +x*O(x^n))^m * x^m/m! )); n!*polcoeff(polcoeff(A, n,x),k,y)} for(n=0, 12, for(k=0, n, print1(T(n,k), ", ")); print(" "))
-
PARI
/* E.g.f. A(x,y) = Sum_{n>=0} A(x,y)^(n^2) * exp(y*x*A(x,y)^n) * x^n/n! */ {T(n,k) = my(A=1); for(i=1,n, A = sum(m=0, n, (A +x*O(x^n))^(m^2) * exp(y*x*A^m +x*O(x^n)) * x^m/m! )); n!*polcoeff(polcoeff(A, n,x),k,y)} for(n=0, 12, for(k=0, n, print1(T(n,k), ", ")); print(" "))
Formula
E.g.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k)*x^n*y^k/n! may be defined as follows.
(1) A(x,y) = Sum_{n>=0} (A(x,y)^n + y)^n * x^n/n!.
(2) A(x,y) = Sum_{n>=0} A(x,y)^(n^2) * exp(y*x*A(x,y)^n) * x^n/n!.
Comments