cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155810 Triangle, read by rows, where g.f.: A(x,y) = exp( Sum_{n>=1} (2^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.

Original entry on oeis.org

1, 2, 1, 10, 6, 1, 188, 82, 14, 1, 16774, 4452, 490, 30, 1, 6745436, 1074934, 71108, 2602, 62, 1, 11466849412, 1082704500, 43173414, 951300, 13002, 126, 1, 80444398636280, 4411700155252, 104251164804, 1387446246, 11470404, 62538, 254, 1, 2306003967992402758, 72146891831948808, 989785148972932, 7803708940836, 38993810694, 129076164, 292810, 510, 1, 268654794629082985019564, 4724816968764733073446, 36967624172237518088, 169140002768370820, 500466007443108, 1001353593606, 1382564804, 1343434, 1022, 1
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.

Examples

			G.f.: A(x,y) = 1 + (2 + y)x + (10 + 6y + y^2)x^2 + (188 + 82y + 14y^2 + y^3)x^3 +...
Triangle begins:
1;
2, 1;
10, 6, 1;
188, 82, 14, 1;
16774, 4452, 490, 30, 1;
6745436, 1074934, 71108, 2602, 62, 1;
11466849412, 1082704500, 43173414, 951300, 13002, 126, 1;
80444398636280, 4411700155252, 104251164804, 1387446246, 11470404, 62538, 254, 1;
2306003967992402758, 72146891831948808, 989785148972932, 7803708940836, 38993810694, 129076164, 292810, 510, 1;
268654794629082985019564, 4724816968764733073446, 36967624172237518088, 169140002768370820, 500466007443108, 1001353593606, 1382564804, 1343434, 1022, 1; ...
		

Crossrefs

Cf. A155200 (column 0), A155201 (row sums), A155811 (column 1).

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n+1,(2^m+y)^m*x^m/m)+x*O(x^n)),n,x),k,y)}
    for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))

Formula

G.f.: A(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k.