A155812 Triangle, read by rows, where g.f.: A(x,y) = exp( Sum_{n>=1} (3^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.
1, 3, 1, 45, 12, 1, 6687, 801, 39, 1, 10782369, 540720, 10764, 120, 1, 169490304819, 3499254081, 29275956, 129348, 363, 1, 25016281429306077, 206071208583660, 709664882337, 1321144632, 1459773, 1092, 1, 34185693516532070487615
Offset: 0
Examples
G.f.: A(x,y) = 1 + (3 + y)x + (45 + 12y + y^2)x^2 + (6687 + 801y + 39y^2 + y^3)x^3 +... Triangle begins: 1; 3, 1; 45, 12, 1; 6687, 801, 39, 1; 10782369, 540720, 10764, 120, 1; 169490304819, 3499254081, 29275956, 129348, 363, 1; 25016281429306077, 206071208583660, 709664882337, 1321144632, 1459773, 1092, 1; 34185693516532070487615, 109444624780070083617, 150302858159634327, 115097787387369, 53628299415, 15815241, 3279, 1; ...
Programs
-
PARI
{T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n+1,(3^m+y)^m*x^m/m)+x*O(x^n)),n,x),k,y)}
Formula
G.f.: A(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k.
Comments