A155822 Number of compositions of n with no part greater than 3 such that no two adjacent parts are equal.
1, 1, 1, 3, 3, 4, 8, 9, 12, 21, 27, 37, 58, 78, 109, 164, 227, 319, 467, 656, 928, 1341, 1896, 2689, 3859, 5477, 7782, 11126, 15817, 22496, 32103, 45679, 65003, 92668, 131912, 187777, 267556, 380941, 542363, 772581, 1100098, 1566414, 2230997
Offset: 0
Examples
a(5) = 4 because we have 5 = 1 + 3 + 1 = 2 + 1 + 2 = 2 + 3 = 3+2.
Links
- D. I. Bevan, Table of n, a(n) for n = 0..5000
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 206.
- Index entries for linear recurrences with constant coefficients, signature (1,-1,2,-1,2).
Programs
-
Maple
From David Bevan, Feb 02 2009: (Start) a := proc(k) if k=0 then 1 else b(1,k)+b(2,k)+b(3,k) fi end; b := proc(r,k) option remember; if k
-
Mathematica
nn=20;CoefficientList[Series[1/(1-Sum[z^j/(1+z^j),{j,1,3}]),{z,0,nn}],z] (* Geoffrey Critzer, Nov 21 2013 *)
Formula
From David Bevan, Feb 02 2009: (Start)
For n>5, a(n) = a(n-1) - a(n-2) + 2*a(n-3) - a(n-4) + 2*a(n-5).
For n>6, a(n) = a(n-3) + a(n-4) + a(n-5) + 2*a(n-6). (End)
G.f.: -(x+1)*(x^2-x+1)*(x^2+1) / (2*x^5-x^4+2*x^3-x^2+x-1). - Colin Barker, Feb 13 2013
G.f.: 1/(1 - Sum_{j=1..3} x^j/(1 + x^j) ) and generally for Carlitz compositions with no part greater than r the o.g.f. is 1/(1 - Sum_{j=1..r} x^j/(1 + x^j) ). - Geoffrey Critzer, Nov 21 2013
Comments