cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A175804 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the n-th term of the k-th differences of partition numbers A000041.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, -1, 0, 1, 3, 2, 1, 1, 2, 5, -4, -2, -1, 0, 2, 7, 9, 5, 3, 2, 2, 4, 11, -21, -12, -7, -4, -2, 0, 4, 15, 49, 28, 16, 9, 5, 3, 3, 7, 22, -112, -63, -35, -19, -10, -5, -2, 1, 8, 30, 249, 137, 74, 39, 20, 10, 5, 3, 4, 12, 42, -539, -290, -153, -79, -40, -20, -10, -5, -2, 2, 14, 56
Offset: 0

Views

Author

Alois P. Heinz, Dec 04 2010

Keywords

Comments

Odlyzko showed that the k-th differences of A000041(n) alternate in sign with increasing n up to a certain index n_0(k) and then stay positive.
Are there any zeros after the first four, which all lie in columns k = 1, 2? - Gus Wiseman, Dec 15 2024

Examples

			Square array A(n,k) begins:
   1,  0,  1, -1,  2,  -4,   9,  ...
   1,  1,  0,  1, -2,   5, -12,  ...
   2,  1,  1, -1,  3,  -7,  16,  ...
   3,  2,  0,  2, -4,   9, -19,  ...
   5,  2,  2, -2,  5, -10,  20,  ...
   7,  4,  0,  3, -5,  10, -20,  ...
  11,  4,  3, -2,  5, -10,  22,  ...
		

Crossrefs

Columns k=0-5 give: A000041, A002865, A053445, A072380, A081094, A081095.
Main diagonal gives A379378.
For primes we have A095195 or A376682.
Row n = 0 is A281425.
Row n = 1 is A320590 except first term.
For composites we have A377033.
For squarefree numbers we have A377038.
For nonsquarefree numbers we have A377046.
For prime powers we have A377051.
Antidiagonal sums are A377056, absolute value version A378621.
The version for strict partitions is A378622, first column A293467.
A000009 counts strict integer partitions, differences A087897, A378972.

Programs

  • Maple
    A41:= combinat[numbpart]:
    DD:= proc(p) proc(n) option remember; p(n+1) -p(n) end end:
    A:= (n,k)-> (DD@@k)(A41)(n):
    seq(seq(A(n, d-n), n=0..d), d=0..11);
  • Mathematica
    max = 11; a41 = Array[PartitionsP, max+1, 0]; a[n_, k_] := Differences[a41, k][[n+1]]; Table[a[n, k-n], {k, 0, max}, {n, 0, k}] // Flatten (* Jean-François Alcover, Aug 29 2014 *)
    nn=5;Table[Table[Sum[(-1)^(k-i)*Binomial[k,i]*PartitionsP[n+i],{i,0,k}],{k,0,nn}],{n,0,nn}] (* Gus Wiseman, Dec 15 2024 *)

Formula

A(n,k) = (Delta^(k) A000041)(n).
A(n,k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k,i) * A000041(n+i). In words, row x is the inverse zero-based binomial transform of A000041 shifted left x times. - Gus Wiseman, Dec 15 2024

A119712 a(n) is the smallest integer k such that the n-th (forward) difference of the partition sequence A000041 is positive from k onwards.

Original entry on oeis.org

0, 1, 6, 23, 64, 129, 222, 345, 502, 695, 924, 1193, 1502, 1853, 2246, 2687, 3172, 3705, 4286, 4917, 5600, 6333, 7118, 7957, 8848, 9797, 10800, 11861, 12978, 14153, 15386, 16681, 18034, 19447, 20922, 22459, 24060, 25723, 27448, 29239, 31094, 33015
Offset: 0

Views

Author

Moshe Shmuel Newman, Jun 11 2006

Keywords

Comments

The first entry is considered to be indexed by zero. For example, the third difference A072380 starts with -1,1 and continues alternating in sign till the 24th entry, from which point it is positive.
Using a different (backward) definition of the difference operator, this sequence has also been given as 1, 8, 26, 68, 134, 228, 352, ... A155861.

Crossrefs

Programs

  • Maple
    with(combinat): DD:= proc(p) proc(n) option remember; p(n+1) -p(n) end end: a:= proc(n) option remember; local f, k; if n=0 then 0 else f:= (DD@@n)(numbpart); for k from a(n-1) while not (f(k)>0 and f(k+1)>0) do od; k fi end: seq(a(n), n=0..20); # Alois P. Heinz, Jul 20 2009
  • Mathematica
    a[n_] := a[n] = Module[{f}, f[i_] = DifferenceDelta[PartitionsP[i], {i, n}]; For[j = 2, True, j++, If[f[j] > 0 && f[j+1] > 0, Return[j]]]];
    a[0] = 0; a[1] = 1;
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 04 2020 *)

Formula

Odlyzko gives an asymptotic formula a(n)~(6/(Pi)^2) * (n log n)^2

Extensions

a(11)-a(41) from Alois P. Heinz, Jul 20 2009
Showing 1-2 of 2 results.