A155862 A 'Morgan Voyce' transform of A007854.
1, 4, 22, 130, 790, 4870, 30274, 189202, 1186702, 7461982, 47007034, 296527162, 1872479350, 11833642006, 74833075570, 473463268642, 2996771766046, 18974162475598, 120167557286314, 761214481604554, 4822871486667526, 30561172252753030, 193682023673424226, 1227594333811376050, 7781431761074125486
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(3*Sqrt(1-6*x+x^2) +x -1) )); // G. C. Greubel, Jun 04 2021 -
Mathematica
CoefficientList[Series[2/(3*Sqrt[1-6*x+x^2]+x-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
-
Sage
def A155862_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 2/(3*sqrt(1-6*x+x^2) +x-1) ).list() A155862_list(30) # G. C. Greubel, Jun 04 2021
Formula
G.f.: 2/(3*sqrt(1-6*x+x^2) + x - 1).
G.f.: 1/(1 -x -3*x/(1 -x -x/(1 -x -x/(1 -x -x/(1 -x -x/(1- ... (continued fraction).
2*n*a(n) +(18-25*n)*a(n-1) + 41*(2*n-3)*a(n-2) +(57-25*n)*a(n-3) +2*(n-3)*a(n-4) =0. - R. J. Mathar, Nov 14 2011
a(n) ~ (1+3/sqrt(17)) * (13+3*sqrt(17))^n / 2^(2*n+2). - Vaclav Kotesovec, Feb 01 2014
Comments