cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155862 A 'Morgan Voyce' transform of A007854.

Original entry on oeis.org

1, 4, 22, 130, 790, 4870, 30274, 189202, 1186702, 7461982, 47007034, 296527162, 1872479350, 11833642006, 74833075570, 473463268642, 2996771766046, 18974162475598, 120167557286314, 761214481604554, 4822871486667526, 30561172252753030, 193682023673424226, 1227594333811376050, 7781431761074125486
Offset: 0

Views

Author

Paul Barry, Jan 29 2009

Keywords

Comments

Hankel transform is 3^n*2^binomial(n+1, 2).
Image of A007854 by Riordan array (1/(1-x), x/(1-x)^2).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(3*Sqrt(1-6*x+x^2) +x -1) )); // G. C. Greubel, Jun 04 2021
    
  • Mathematica
    CoefficientList[Series[2/(3*Sqrt[1-6*x+x^2]+x-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
  • Sage
    def A155862_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 2/(3*sqrt(1-6*x+x^2) +x-1) ).list()
    A155862_list(30) # G. C. Greubel, Jun 04 2021

Formula

G.f.: 2/(3*sqrt(1-6*x+x^2) + x - 1).
G.f.: 1/(1 -x -3*x/(1 -x -x/(1 -x -x/(1 -x -x/(1 -x -x/(1- ... (continued fraction).
a(n) = Sum_{k=0..n} binomial(n+k, 2*k)*A007854(k) = Sum_{k=0..n} A085478(n,k) * A007854(k).
2*n*a(n) +(18-25*n)*a(n-1) + 41*(2*n-3)*a(n-2) +(57-25*n)*a(n-3) +2*(n-3)*a(n-4) =0. - R. J. Mathar, Nov 14 2011
a(n) ~ (1+3/sqrt(17)) * (13+3*sqrt(17))^n / 2^(2*n+2). - Vaclav Kotesovec, Feb 01 2014