cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155866 A 'Morgan Voyce' transform of the Bell numbers A000110.

Original entry on oeis.org

1, 2, 6, 22, 91, 413, 2032, 10754, 60832, 365815, 2327835, 15612872, 109992442, 811500784, 6253327841, 50211976959, 419239644142, 3632891419054, 32616077413970, 302915722319509, 2906047810600157, 28761123170398258, 293296874302640254, 3078390856651377534, 33220524976632438215
Offset: 0

Views

Author

Paul Barry, Jan 29 2009

Keywords

Comments

Image of Bell numbers under Riordan array (1/(1-x), x/(1-x)^2).

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n+j,2*j)*Bell(j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 10 2021
    
  • Mathematica
    A155866[n_]:= Sum[Binomial[n+j, 2*j]*BellB[j], {j,0,n}];
    Table[A155866[n], {n, 0, 30}] (* G. C. Greubel, Jun 10 2021 *)
  • Sage
    def A155866(n): return sum( binomial(n+j, 2*j)*bell_number(j) for j in (0..n) )
    [A155866(n) for n in (0..30)] # G. C. Greubel, Jun 10 2021

Formula

G.f.: 1/(1 -x -x/(1 -x -x/(1 -x -x/(1 -x -2*x/(1 -x -x/(1 -x -3*x/(1 -x -x/(1 -x -4*x/(1 - ... (continued fraction).
a(n) = Sum_{k=0..n} binomial(n+k,2k)*A000110(k).
a(n) = Sum_{k=0..n} A085478(n,k)*A000110(k). - Philippe Deléham, Jan 31 2009