A155866 A 'Morgan Voyce' transform of the Bell numbers A000110.
1, 2, 6, 22, 91, 413, 2032, 10754, 60832, 365815, 2327835, 15612872, 109992442, 811500784, 6253327841, 50211976959, 419239644142, 3632891419054, 32616077413970, 302915722319509, 2906047810600157, 28761123170398258, 293296874302640254, 3078390856651377534, 33220524976632438215
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..550
- Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
Programs
-
Magma
[(&+[Binomial(n+j,2*j)*Bell(j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 10 2021
-
Mathematica
A155866[n_]:= Sum[Binomial[n+j, 2*j]*BellB[j], {j,0,n}]; Table[A155866[n], {n, 0, 30}] (* G. C. Greubel, Jun 10 2021 *)
-
Sage
def A155866(n): return sum( binomial(n+j, 2*j)*bell_number(j) for j in (0..n) ) [A155866(n) for n in (0..30)] # G. C. Greubel, Jun 10 2021
Formula
G.f.: 1/(1 -x -x/(1 -x -x/(1 -x -x/(1 -x -2*x/(1 -x -x/(1 -x -3*x/(1 -x -x/(1 -x -4*x/(1 - ... (continued fraction).
a(n) = Sum_{k=0..n} binomial(n+k,2k)*A000110(k).
Comments