cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A341043 a(n) = 16*n^3 - 36*n^2 + 30*n - 9.

Original entry on oeis.org

1, 35, 189, 559, 1241, 2331, 3925, 6119, 9009, 12691, 17261, 22815, 29449, 37259, 46341, 56791, 68705, 82179, 97309, 114191, 132921, 153595, 176309, 201159, 228241, 257651, 289485, 323839, 360809, 400491, 442981, 488375, 536769, 588259, 642941, 700911, 762265
Offset: 1

Views

Author

David Z Crookes, Feb 03 2021

Keywords

Comments

The n-th term of A155883 (hexagonal bifrustum numbers) has a hexagonal pyramid of [n - 1] set on each of its two hexagonal faces.
The digital roots run recursively 1, 8, 9.
The sum of the first n consecutive terms is the square of the n-th hexagonal number.

Examples

			For n = 3 the solution is 173 + 8 + 8 = 189.
		

Crossrefs

Programs

  • PARI
    Vec(x*(9*x^3+55*x^2+31*x+1)/(x-1)^4 + O(x^38)) \\ Elmo R. Oliveira, Sep 01 2025

Formula

a(n) = 16*n^3 - 36*n^2 + 30*n - 9.
a(n) = A155883(n) + 2*A000578(n-1).
G.f.: x*(1 + 31*x + 55*x^2 + 9*x^3)/(1 - x)^4. - Stefano Spezia, Feb 04 2021
From Elmo R. Oliveira, Sep 01 2025: (Start)
E.g.f.: 9 + exp(x)*(-9 + 10*x + 12*x^2 + 16*x^3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

Extensions

More terms from Elmo R. Oliveira, Sep 01 2025
Showing 1-1 of 1 results.