cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155951 Triangle read by rows. Let q(x,n) = -((x - 1)^(2*n + 1)/x^n)*Sum[(k + n)^n*Binomial[k, n]*x^k, {k, 0, Infinity}]; p(x,n)=q(x,n)+x^n*q(1/x,n); then row n gives coefficients of p(x,n).

Original entry on oeis.org

2, 4, 17, -10, 17, 208, -88, -88, 208, 4177, -4708, 4422, -4708, 4177, 98976, -123888, 55152, 55152, -123888, 98976, 3001609, -5204582, 5360567, -4984628, 5360567, -5204582, 3001609, 105133568, -210753520, 208361232, -85444000, -85444000
Offset: 0

Views

Author

Roger L. Bagula, Jan 31 2009

Keywords

Comments

Row sums are in A151817.

Examples

			{2},
{4},
{17, -10, 17},
{208, -88, -88, 208},
{4177, -4708, 4422, -4708, 4177},
{98976, -123888, 55152, 55152, -123888, 98976},
{3001609, -5204582, 5360567, -4984628, 5360567, -5204582, 3001609},
{105133568, -210753520, 208361232, -85444000, -85444000, 208361232, -210753520, 105133568},
{4300732097, -10315512136, 13267499516, -12384821752, 11302041350, -12384821752, 13267499516, -10315512136, 4300732097},
{198225072640, -539802938440, 752937755480, -641425101400, 247708437320, 247708437320, -641425101400, 752937755480, -539802938440, 198225072640},
{10243486784401, -31622720552146, 50805231998853, -55277019174408, 48150459465066, -43257991897932, 48150459465066, -55277019174408, 50805231998853, -31622720552146, 10243486784401}
		

Programs

  • Mathematica
    Clear[p, x, n, m];
    p[x_, n_] = -((x - 1)^(2*n + 1)/x^n)*Sum[(k + n)^n*Binomial[k, n]*x^k, {k, 0, Infinity}];
    Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];
    Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]
    + Reverse[ CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 10}];
    Flatten[%]

Formula

q(x,n)=-((x - 1)^(2*n + 1)/x^n)*Sum[(k + n)^n*Binomial[k, n]*x^k, {k, 0, Infinity}];
p(x,n)=q(x,n)+x^n*q(1/x,n);
t(n,m)=coefficients(p(x,n))

Extensions

Edited by N. J. A. Sloane, Jul 05 2009