Original entry on oeis.org
1, 360, 302400, 122594472000, 333456963840000, 7840406862288000000, 4962375400581280281600000, 32379499488792853837440000000, 32762872762740161226875289600000000, 49021399349801594985745916351847936000000000, 210558581969147803224489602616032563200000000000, 874618237783446145033884911346476061020160000000000
Offset: 0
A231273
Numerator of zeta(4n)/(zeta(2n) * Pi^(2n)).
Original entry on oeis.org
1, 1, 1, 691, 3617, 174611, 236364091, 3392780147, 7709321041217, 26315271553053477373, 261082718496449122051, 2530297234481911294093, 5609403368997817686249127547, 61628132164268458257532691681, 354198989901889536240773677094747
Offset: 0
- T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976, p. 231.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, Clarendon Press, 1960, p. 255.
Cf.
A231327 (corresponding denominator).
-
seq(numer((-1)^n*bernoulli(4*n)*4^n*(2*n)!/(bernoulli(2*n)*(4*n)!)),n=0..100); # Robert Israel, Aug 22 2014
-
Numerator[Table[Zeta[4n]/(Zeta[2n] * Pi^(2n)), {n, 0, 15}]] (* T. D. Noe, Nov 18 2013 *)
A231327
Denominator of rational component of zeta(4n)/zeta(2n).
Original entry on oeis.org
1, 15, 105, 675675, 34459425, 16368226875, 218517792968475, 30951416768146875, 694097901592400930625, 23383376494609715287281703125, 2289686345687357378035370971875, 219012470258383844016431785453125, 4791965046290912124048163518904807546875
Offset: 0
- T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976, p. 231.
Cf.
A231273 (the corresponding numerator).
-
seq(denom(bernoulli(4*n)*4^n*(2*n)!/(bernoulli(2*n)*(4*n)!)),n=0..100); # Robert Israel, Aug 22 2014
-
Denominator[Table[Zeta[4 n]/Zeta[2 n], {n, 0, 15}]] (* T. D. Noe, Nov 15 2013 *)
Showing 1-3 of 3 results.
Comments