A156050 Triangle T(n,m) = binomial(n,m)+2*P(n,m) read by rows, where P(n,m) = 1+A000041(n)-A000041(m)-A000041(n-m).
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 8, 10, 8, 1, 1, 9, 16, 16, 9, 1, 1, 14, 25, 32, 25, 14, 1, 1, 15, 35, 51, 51, 35, 15, 1, 1, 22, 48, 82, 96, 82, 48, 22, 1, 1, 25, 64, 118, 164, 164, 118, 64, 25, 1, 1, 34, 83, 170, 264, 310, 264, 170, 83, 34, 1
Offset: 0
Examples
P(n,m) starts in row n= 0 as 0 0, 0 0, 1, 0 0, 1, 1, 0 0, 2, 2, 2, 0 0, 2, 3, 3, 2, 0 0, 4, 5, 6, 5, 4, 0 0, 4, 7, 8, 8, 7, 4, 0 0, 7, 10, 13, 13, 13, 10, 7, 0 0, 8, 14, 17, 19, 19, 17, 14, 8, 0 0, 12, 19, 25, 27, 29, 27, 25, 19, 12, 0 to yield T(n,m) from row n=0 on: 1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 8, 10, 8, 1, 1, 9, 16, 16, 9, 1, 1, 14, 25, 32, 25, 14, 1, 1, 15, 35, 51, 51, 35, 15, 1, 1, 22, 48, 82, 96, 82, 48, 22, 1, 1, 25, 64, 118, 164, 164, 118, 64, 25, 1, 1, 34, 83, 170, 264, 310, 264, 170, 83, 34, 1
Programs
-
Mathematica
Clear[f]; t[n_, m_] = 1 + PartitionsP[n] - PartitionsP[m] - PartitionsP[n - m]; \! Table[(Table[t[n, m], {m, 0, n}] + Reverse[Table[t[n, m], {m, 0, n}]])/2, {n, 0, 10}]; Table[Table[Binomial[n, m], {m, 0, n}] + (Table[t[n, m], {m, 0, n}] + Reverse[Table[t[n, m], {m, 0, n}]]), {n, 0, 10}]; Flatten[%]
Extensions
Row sum formula and P(n,m) examples added - The Assoc. Eds. of the OEIS, Aug 29 2010
Comments