cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A156171 G.f.: A(x) = exp( Sum_{n>=1} x^n/(1 - 2^n*x)^n / n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 1, 3, 11, 53, 357, 3521, 51665, 1122135, 35638903, 1639453459, 108526044099, 10298220348807, 1396920580458279, 270394562069007327, 74574294532698008703, 29276455806256470979269, 16344863466384180848085765, 12969208162308705691408055345, 14616452655308018025267503353697
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 53*x^4 + 357*x^5 + 3521*x^6 + 51665*x^7 + 1122135*x^8 + 35638903*x^9 + 1639453459*x^10 + 108526044099*x^11 +...
such that:
log(A(x)) = Sum_{n>=1} x^n/n * (1 + 2^n*x + 4^n*x^2 +...+ 2^(n*k)*x^k +...)^n
or
log(A(x)) = x*(1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + 32*x^5 +...) +
x^2/2*(1 + 8*x + 48*x^2 + 256*x^3 + 1280*x^4 + 6144*x^5 +...) +
x^3/3*(1 + 24*x + 384*x^2 + 5120*x^3 + 61440*x^4 + 688128*x^5 +...) +
x^4/4*(1 + 64*x + 2560*x^2 + 81920*x^3 + 2293760*x^4 + 58720256*x^5 +...) +
x^5/5*(1 + 160*x + 15360*x^2 + 1146880*x^3 + 73400320*x^4 + 4227858432*x^5 +...) +
x^6/6*(1 + 384*x + 86016*x^2 + 14680064*x^3 + 2113929216*x^4 + 270582939648*x^5 +...) +...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 25*x^3/3 + 161*x^4/4 + 1441*x^5/5 + 18305*x^6/6 + 330625*x^7/7 + 8488961*x^8/8 + 309465601*x^9/9 + 16011372545*x^10/10 + 1174870185985*x^11/11 + 122233833963521*x^12/12 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[x^k/(1 - 2^k*x)^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 17 2020 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,x^m/(1-2^m*x+x*O(x^n))^m/m)),n)}

Formula

a(n) ~ c * 2^(n^2/4 + n + 1/2) / (sqrt(Pi) * n^(3/2)), where c = EllipticTheta[3, 0, 1/2] = JacobiTheta3(0,1/2) = 2.1289368272118771586694585... if n is even and c = EllipticTheta[2, 0, 1/2] = JacobiTheta2(0,1/2) = 2.1289312505130275585916134... if n is odd. - Vaclav Kotesovec, Oct 17 2020

A156101 L.g.f.: A(x) = Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} (1 + 2^n*x)^n*x^n/n .

Original entry on oeis.org

1, 5, 13, 65, 401, 3521, 43457, 738305, 17746177, 593695745, 27878501377, 1840450134017, 169904883945473, 22139372291866625, 4036405254299041793, 1038968242677362458625, 375102612647535161966593
Offset: 1

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

Compare to l.g.f. Sum_{m>=1} (1 + x)^m * x^m/m of the Fibonacci sequence.

Examples

			G.f.: A(x) = x + 5*x^2/2 + 13*x^3/3 + 65*x^4/4 + 401*x^5/5 + ...
A(x) = (1 + 2*x)*x + (1 + 2^2*x)^2*x^2/2 + (1 + 2^3*x)^3*x^3/3 + ...
exp(A(x)) = 1 + x + 3*x^2 + 7*x^3 + 25*x^4 + 113*x^5 + 741*x^6 + ...
		

Crossrefs

Cf. A156100.

Programs

  • Mathematica
    Table[n*Sum[Binomial[n-k,k]*2^(k(n-k))/(n-k),{k,0,Floor[n/2]}],{n,1,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    {a(n)=n*polcoeff(sum(m=1,n+1,(1+2^m*x)^m*x^m/m)+x*O(x^n),n)}
    
  • PARI
    {a(n)=n*sum(k=0,n\2,binomial(n-k,k)*2^(k*(n-k))/(n-k))} \\ Paul D. Hanna, Apr 10 2009

Formula

L.g.f.: A(x) = log(G(x)) where G(x) is the g.f. of A156100.
a(n) = n*Sum_{k=0..floor(n/2)} C(n-k,k)*2^(k(n-k))/(n-k). - Paul D. Hanna, Apr 10 2009

Extensions

Offset corrected by Vaclav Kotesovec, Mar 06 2014

A163189 G.f.: A(x) = exp( Sum_{n>=1} (1 + A000204(n)*x)^n * x^n/n ).

Original entry on oeis.org

1, 1, 2, 5, 14, 40, 159, 812, 5133, 42942, 474619, 6708142, 121367878, 2819170132, 83571532538, 3148951107867, 151069353323782, 9219463980803329, 714951048370178409, 70448496563603216429, 8818161368662624534857
Offset: 0

Views

Author

Paul D. Hanna, Jul 22 2009

Keywords

Comments

Compare to g.f. of Fibonacci sequence: exp( Sum_{n>=1} A000204(n)*x^n/n ), where A000204 is the Lucas numbers.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 40*x^5 + 159*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, (1+(fibonacci(m-1)+fibonacci(m+1))*x+x*O(x^n))^m*x^m/m)), n)}

A163572 G.f.: A(x) = exp( Sum_{n>=1} (1 + 2*A006519(n)*x)^n * x^n/n ) where A006519(n) is the highest power of 2 dividing n.

Original entry on oeis.org

1, 1, 3, 7, 19, 39, 169, 765, 2183, 4131, 11561, 55157, 666381, 8175433, 68536455, 355280675, 1048740623, 1931107235, 5055100985, 13108206741, 38734589993, 143320957605, 1022112572635, 26523801989399, 914332703582521
Offset: 0

Views

Author

Paul D. Hanna, Jul 31 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 19*x^4 + 39*x^5 + 169*x^6 +...
log(A(x)) = (1+2*x)*x + (1+4*x)^2*x^2/2 + (1+2*x)^3*x^3/3 + (1+8*x)^4*x^4/4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, (1+2^valuation(2*m,2)*x+x*O(x^n))^m*x^m/m)), n)}
Showing 1-4 of 4 results.