cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156305 G.f.: A(x) = exp( Sum_{n>=1} sigma(n) * C(2*n-1,n) * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 1, 5, 18, 87, 290, 1553, 5015, 25436, 94500, 431464, 1519749, 8024004, 26746757, 125190249, 498138920, 2221127601, 8020960187, 38836436844, 138444409552, 655009491676, 2512996318026, 10775473291178, 40824090856703
Offset: 0

Views

Author

Paul D. Hanna, Feb 08 2009

Keywords

Comments

Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ),
and to the g.f. of Catalan numbers: exp( Sum_{n>=1} C(2*n-1,n)*x^n/n ),
where sigma(n) = A000203(n) is the sum of the divisors of n.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 18*x^3 + 87*x^4 + 290*x^5 + 1553*x^6 + 5015*x^7 + ...
log(A(x)) = x + 3*3*x^2/2 + 4*10*x^3/3 + 7*35*x^4/4 + 6*126*x^5/5 + 12*462*x^6/6 + ... + A000203(n)*A001700(n)*x^n/n + ...
		

Crossrefs

Cf. A000203 (sigma), A000041 (partitions), A001700 (C(2*n-1, n)), A000108 (Catalan).

Programs

  • Mathematica
    a[n_] := If[n==0, 1, (1/n) * Sum[DivisorSigma[1, k] * Binomial[2k - 1, k] a[n - k], {k, n}] ]; Table[a[n], {n, 0, 23}] (* Indranil Ghosh, Mar 12 2017 *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,sigma(k)*binomial(2*k-1,k)*x^k/k)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*sum(k=1,n,sigma(k)*binomial(2*k-1,k)*a(n-k)))}

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma(k)*C(2*k-1,k)*a(n-k) for n>0, with a(0) = 1.