A156353 A symmetrical powers triangle sequence: t(n,m) = (m^(n - m) + (n - m)^m).
2, 3, 3, 4, 8, 4, 5, 17, 17, 5, 6, 32, 54, 32, 6, 7, 57, 145, 145, 57, 7, 8, 100, 368, 512, 368, 100, 8, 9, 177, 945, 1649, 1649, 945, 177, 9, 10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10, 11, 593, 7073, 18785, 23401, 23401, 18785, 7073, 593, 11, 12, 1124, 20412
Offset: 1
Examples
{2}, {3, 3}, {4, 8, 4}, {5, 17, 17, 5}, {6, 32, 54, 32, 6}, {7, 57, 145, 145, 57, 7}, {8, 100, 368, 512, 368, 100, 8}, {9, 177, 945, 1649, 1649, 945, 177, 9}, {10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10}, {11, 593, 7073, 18785, 23401, 23401, 18785, 7073, 593, 11}, {12, 1124, 20412, 69632, 94932, 93312, 94932, 69632, 20412, 1124, 12}
Links
- Boris Putievskiy, Rows n = 1..77 of triangle, flattened
Crossrefs
Cf. A005652 is the same table with row 0 and column 0 included.
Programs
-
Mathematica
Clear[t, n, m]; t[n_, m_] = (m^(n - m) + (n - m)^m); Table[Table[t[n, m], {m, 1, n - 1}], {n, 2, 12}]; Flatten[%]
-
Python
t=int((math.sqrt(8*n-7) - 1)/ 2) m=((t*t+3*t+4)/2-n)**(n-t*(t+1)/2)+(n-t*(t+1)/2)**((t*t+3*t+4)/2-n) # Boris Putievskiy, Dec 14 2012
Formula
t(n,m) = (m^(n - m) + (n - m)^m).
((t*t+3*t+4)/2-n)^(n-(t*(t+1)/2))+ (n-(t*(t+1)/2))^((t*t+3*t+4)/2-n), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 14 2012
Extensions
Edited by Franklin T. Adams-Watters, Oct 26 2009
Comments