cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156353 A symmetrical powers triangle sequence: t(n,m) = (m^(n - m) + (n - m)^m).

Original entry on oeis.org

2, 3, 3, 4, 8, 4, 5, 17, 17, 5, 6, 32, 54, 32, 6, 7, 57, 145, 145, 57, 7, 8, 100, 368, 512, 368, 100, 8, 9, 177, 945, 1649, 1649, 945, 177, 9, 10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10, 11, 593, 7073, 18785, 23401, 23401, 18785, 7073, 593, 11, 12, 1124, 20412
Offset: 1

Views

Author

Roger L. Bagula, Feb 08 2009

Keywords

Comments

Equivalently, table by antidiagonals of n^m + m^n for n,m > 0.
Row sums are:
{2, 6, 16, 44, 130, 418, 1464, 5560, 22754, 99726, 465536,...}.

Examples

			{2},
{3, 3},
{4, 8, 4},
{5, 17, 17, 5},
{6, 32, 54, 32, 6},
{7, 57, 145, 145, 57, 7},
{8, 100, 368, 512, 368, 100, 8},
{9, 177, 945, 1649, 1649, 945, 177, 9},
{10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10},
{11, 593, 7073, 18785, 23401, 23401, 18785, 7073, 593, 11},
{12, 1124, 20412, 69632, 94932, 93312, 94932, 69632, 20412, 1124, 12}
		

Crossrefs

Cf. A005652 is the same table with row 0 and column 0 included.

Programs

  • Mathematica
    Clear[t, n, m];
    t[n_, m_] = (m^(n - m) + (n - m)^m);
    Table[Table[t[n, m], {m, 1, n - 1}], {n, 2, 12}];
    Flatten[%]
  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    m=((t*t+3*t+4)/2-n)**(n-t*(t+1)/2)+(n-t*(t+1)/2)**((t*t+3*t+4)/2-n)
    # Boris Putievskiy, Dec 14 2012

Formula

t(n,m) = (m^(n - m) + (n - m)^m).
a(n) = A004736(n)^A002260(n) + A002260(n)^A004736(n) or
((t*t+3*t+4)/2-n)^(n-(t*(t+1)/2))+ (n-(t*(t+1)/2))^((t*t+3*t+4)/2-n), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 14 2012

Extensions

Edited by Franklin T. Adams-Watters, Oct 26 2009