A156361 a(2*n+2) = 7*a(2*n+1), a(2*n+1) = 7*a(2*n) - 6^n*A000108(n), a(0) = 1.
1, 6, 42, 288, 2016, 14040, 98280, 686880, 4808160, 33638976, 235472832, 1647983232, 11535882624, 80745019776, 565215138432, 3956385876480, 27694701135360, 193860506096640, 1357023542676480, 9499115800977408
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, A Note on a One-Parameter Family of Catalan-Like Numbers, JIS 12 (2009) 09.5.4.
Programs
-
Magma
[n le 3 select Factorial(n+4)/120 else (7*n*Self(n-1) + 24*(n-3)*Self(n-2) - 168*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
-
Maple
A156361 := proc(n) option remember; local nh; if n= 0 then 1; elif type(n,'even') then 7*procname(n-1); else nh := floor(n/2) ; 7*procname(n-1)-6^nh*A000108(nh) ; end if; end proc: # R. J. Mathar, Jul 21 2016
-
Mathematica
a[n_]:= a[n]= If[n==0, 1, 7*a[n-1] -If[EvenQ[n], 0, 6^((n-1)/2)* CatalanNumber[(n-1)/2]]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 04 2022 *)
-
SageMath
def a(n): # a = A156361 if (n==0): return 1 elif (n%2==1): return 7*a(n-1) - 6^((n-1)/2)*catalan_number((n-1)/2) else: return 7*a(n-1) [a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022
Formula
a(n) = Sum{k=0..n} A120730(n,k) * 6^k.
(n+1)*a(n) = 7*(n+1)*a(n-1) + 24*(n-2)*a(n-2) - 168*(n-2)*a(n-3). - R. J. Mathar, Jul 21 2016
Comments