cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156361 a(2*n+2) = 7*a(2*n+1), a(2*n+1) = 7*a(2*n) - 6^n*A000108(n), a(0) = 1.

Original entry on oeis.org

1, 6, 42, 288, 2016, 14040, 98280, 686880, 4808160, 33638976, 235472832, 1647983232, 11535882624, 80745019776, 565215138432, 3956385876480, 27694701135360, 193860506096640, 1357023542676480, 9499115800977408
Offset: 0

Views

Author

Philippe Deléham, Feb 08 2009

Keywords

Comments

Hankel transform is 6^C(n+1, 2).

Crossrefs

Programs

  • Magma
    [n le 3 select Factorial(n+4)/120 else (7*n*Self(n-1) + 24*(n-3)*Self(n-2) - 168*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
    
  • Maple
    A156361 := proc(n)
        option remember;
        local nh;
        if n= 0 then
            1;
        elif  type(n,'even') then
            7*procname(n-1);
        else
            nh := floor(n/2) ;
            7*procname(n-1)-6^nh*A000108(nh) ;
        end if;
    end proc: # R. J. Mathar, Jul 21 2016
  • Mathematica
    a[n_]:= a[n]= If[n==0, 1, 7*a[n-1] -If[EvenQ[n], 0, 6^((n-1)/2)* CatalanNumber[(n-1)/2]]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 04 2022 *)
  • SageMath
    def a(n): # a = A156361
        if (n==0): return 1
        elif (n%2==1): return 7*a(n-1) - 6^((n-1)/2)*catalan_number((n-1)/2)
        else: return 7*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022

Formula

a(n) = Sum{k=0..n} A120730(n,k) * 6^k.
(n+1)*a(n) = 7*(n+1)*a(n-1) + 24*(n-2)*a(n-2) - 168*(n-2)*a(n-3). - R. J. Mathar, Jul 21 2016